Giả sử trong 2016 số này khác nhau từng đôi 1 ta có
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2016}}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\)
\(< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{7}+\frac{1}{8}+\frac{1}{8}+...+\frac{1}{8}\)(2009 số \(\frac{1}{8}\))
\(=1+\frac{1}{2}+...+\frac{1}{7}+\frac{2009}{8}\)
\(=\frac{363}{140}+\frac{2009}{8}\approx253,72< 300\)
Vậy trong 2016 số đã cho tồn tại ít nhất 2 số bằng nhau
Có vẻ thiếu cái gì đó. khi có hai số bằng nhau rồi. g/s là a2015=a2016
Liệu P trình : 1/a1+...+1/a2015=B có tồn tại Nghiệm nguyên
Giả sử trong 2016 số đã cho không có hai số nào bằng nhau, không mất tính tổng quát ta giả sử \(a_1< a_2< ...< a_{2016}\)
Vì \(a_1,a_2,...,a_{2016}\) đều là số nguyên dương nên ta suy ra \(a_1\ge1;a_2\ge2;...;a_{2016}\ge2016\).Suy ra
\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2016}}< 1+\frac{1}{2}+...+\frac{1}{2016}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{1024}+\frac{1}{1025}+...+\frac{1}{2016}\right)\)
\(< 1+\frac{1}{2}\cdot2+\frac{1}{2^2}\cdot2^2+...+\frac{1}{2^{10}}\cdot2^{10}=11< 300\)
Mâu thuẫn với giả thiết. Do đó điều giả sử là sai
Vậy trong 2016 số đã cho phải có ít nhất 2 số bằng nhau
Mình phác thảo để mọi người xem lai thôi. Đúng như đề của bạn không cần phải c/m lằng nhằng như hai cao thủ kia đâu. Vì ai nguyên dương=>1/ai<=1
=>VT<=3=>vô nghiệm nguyên, ý nói không tồn tại nghiệm, =>cần gì xét đến bằng nhau hay khác nhau làm gì
cách cửa alibaba nguyễn chưa hay lắm
minh co cách ngắn hơn mà chính xác hơn
đây là toán 7 mà chiều nay mk mới thi hsg cấp Huyện vào bài này là bài cuối nè thangnguyen giải đúng rùi đấy