Điều kiện để A xác định là:
\(m-1< 8\)
\(\Leftrightarrow m< 8+1\Leftrightarrow m< 9\)
Để: \(A\backslash B=\varnothing\)
\(\Leftrightarrow A\subset B\) \(\Rightarrow2\le m-1\)
\(\Leftrightarrow m\ge3\)
kết hợp với điều kiện:
\(\Rightarrow3\le m< 9\)
Điều kiện để A xác định là:
\(m-1< 8\)
\(\Leftrightarrow m< 8+1\Leftrightarrow m< 9\)
Để: \(A\backslash B=\varnothing\)
\(\Leftrightarrow A\subset B\) \(\Rightarrow2\le m-1\)
\(\Leftrightarrow m\ge3\)
kết hợp với điều kiện:
\(\Rightarrow3\le m< 9\)
[2] Cho tập hợp A = [ 1-m; 4-m ]; B = [ 7-4m; \(+\infty\) ) ( m là tham số ). Tìm tất cả giá trị của m để A \(\cap B\ne\varnothing\)
A. m >= 1 B. m <= 1 C. m > 1 D. m >= 2
Cho hai tập hợp: A = [m;m + 1] và B = [0;3). Tìm tất cả các giá trị thực của tham số m để A giao B = rỗng .
1, Cho m là một tham số thực và hai tập hợp A =[ 1-2m; m+3], B = {x thuộc R| x>= 8-5m}. Tìm tất cả các giá trị m để A giao B= rỗng 2, Cho các tập hợp khác rỗng A= ( âm vô cực; m) và B=[ 2m - 2; 2m +2]. Tìm m thuộc R để CR (A hợp B) là một khỏang
Cho m là một tham số thực và hai tập hợp khác rỗng A = [1−2m; m+3], B = { x ∈ R | x ≥ 8−5m}. Tất cả các giá trị m để A ∩ B = ∅ là:
A. m ≥ 5 6
B. m < 5 6
C. m ≤ 5 6
D. − 2 3 ≤ m < 5 6
cho nửa khoảng A=(-\(\infty\);-m] và khoảng B=(2m-5;23). gọi S là tập hợp các số thực m để \(A\cup B=A\). hỏi S là tập con của tập hợp nào sau đây?
A. (-\(\infty\);-23)
B. (-\(\infty\);0]
C. (-23;+\(\infty\))
D. \(\varnothing\).
Cho 2 tập hợp A=[m-4;1], B=(-3;m] khác rỗng. tính tổng tất cả các giá trị nguyên của m để \(A\cup B=B\).
Cho hai tập hợp A = (− ∞ ; m] và B = (2; + ∞ ). Tìm tất cả các giá trị thực của tham số m để A ∪ B = R.
A. m > 0
B. m ≥ 2
C. m ≥ 0
D. m > 2
Cho hai tập hợp A = [−2; 3) và B = [m; m+5). Tìm tất cả các giá trị thực của tham số m để A ∩ B ≠ ∅
A. − 7 < m ≤ − 2
B. − 2 < m ≤ 3
C. − 2 ≤ m < 3
D. - 7 < m < 3
Cho các tập hợp khác rỗng A= m − 1 ; m + 3 2 và B = ( − ∞ ; − 3 ) ∪ [ 3 ; + ∞ ) . Tập hợp các giá trị thực của mm để A ∩ B ≠ ∅ là:
A. ( − ∞ ; − 2 ) ∪ [ 3 ; 5 )
B. (-2;3)
C. ( − ∞ ; − 2 ) ∪ [ 3 ; 5 ]
D. ( − ∞ ; − 9 ) ∪ ( 4 ; + ∞ )