\(P=45x+\dfrac{5}{x}+5y+\dfrac{45}{y}=\left(\dfrac{x}{5}+\dfrac{5}{x}\right)+\left(\dfrac{9y}{5}+\dfrac{45}{y}\right)+\dfrac{224}{5}x+\dfrac{16}{5}y\)
\(P\ge2\sqrt{\dfrac{5x}{5x}}+2\sqrt{\dfrac{9.45y}{5y}}+\dfrac{224}{5}.5+\dfrac{16}{5}.5=260\)
\(P_{min}=260\) khi \(x=y=5\)