Chắc đề phải có thêm dữ kiện a;b dương chứ nhỉ?
Chắc đề phải có thêm dữ kiện a;b dương chứ nhỉ?
Cho a,b,c > 0 thỏa a+b+c=abc. Tìm GTLN của BT :
\(\dfrac{a}{\sqrt{bc\left(1+a^2\right)}}+\dfrac{b}{\sqrt{ac\left(1+b^2\right)}}+\dfrac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Cho \(-1\le a\le1\). Tìm GTLN của b sao cho BĐT đúng \(\sqrt{1-a^4}+\left(b+1\right)\left(\sqrt{1+a^2}+\sqrt{1-a^2}\right)+b-4\le0\)
Cho các số thực \(a,b,c\in\left[0;1\right]\).Tìm GTLN của biểu thức:
\(P=\frac{c}{\sqrt{2\left(a^2+b^2\right)}+1}+\frac{a}{\sqrt{2\left(b^2+c^2\right)}+1}+\frac{b}{\sqrt{2\left(c^2+a^2\right)}+1}\)
Cho các số dương a , b , c \(\ne0\) . TM: a +b + c =abc . Tìm GTLN của bt \(\frac{a}{\sqrt{bc\left(1+A^2\right)}}+\frac{b}{\sqrt{ca\left(1+b^2\right)}}+\frac{c}{\sqrt{ab\left(1+c^2\right)}}\)
Cho a,b,c >0 và a+b+c=1. Tìm GTLN của
P=\(\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\)
Cho ba số thực a,b,c không âm thỏa mãn a + b + c = 3. Tìm GTLN của biểu thức \(K=\sqrt{12a+\left(b-c\right)^2}+\sqrt{12b+\left(a-c\right)^2}+\sqrt{12c+\left(a-b\right)^2}\)
Cho a, b thỏa mãn: a+b\(\le\)2; a, b>0.
Tìm GTLN của P=\(\sqrt{a\left(b+1\right)}+\sqrt{b\left(a+1\right)}\)
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
Cho ba số thực dương a,b,c thõa mãn:
\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)_{ }+2015\)
Tìm Max của biểu thức:
\(P=\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\)
Gỉai giúp mình nha
Cho a,b,c là 3 số thực dương thỏa mãn a+b+c=3 tìm GTLN của
\(\sqrt{\left(a+b\right)\left(b+c\right)}+\sqrt{\left(b+c\right)\left(a+c\right)}+\sqrt{\left(a+b\right)\left(a+c\right)}\)