Cho ∫ 1 4 f ( x ) d x = 9 . Tính tích phân K = ∫ 0 1 f ( 3 x + 1 )
A. K=3
B. K=9
C. K=1
D. K=27
Cho hàm số f(x) liên tục trên R thoả mãn f ( t a n x ) = c o s 4 x , ∀ x ∈ R \ { π 2 + k π , k ∈ Z } . Tích phân ∫ 0 1 f ( x ) d x bằng
A. π + 2 8
B. 1
C. π + 2 4
D. π 4
Cho hàm số f(x) thỏa mãn f(x).f '(x)=1 với mọi x ∈ ℝ Biết ∫ 1 2 f ( x ) d x = a và f(1)=b,f(2)=c. Tích phân ∫ 1 2 x f ( x ) d x bằng
A. 2c-b-a
B. 2a-b-c
C. 2c-b+a
D. 2a-b+c
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1)=0 và ∫ 0 1 [ f ' ( x ) ] 2 d x = ∫ 0 1 ( x + 1 ) e x f ( x ) d x = e 2 - 1 4 Tính tích phân I= I = ∫ 0 1 f ( x ) d x
A. I=2-e
B. I=e-2
C. I=e/2
D. I = e - 1 2
Cho hàm số f (x) có đạo hàm liên tục trên đoạn [1;2] thỏa mãn ∫ 1 2 ( x - 1 ) 2 f ( x ) d x = - 1 3 , f(2) = 0 và ∫ 1 2 f ' ( x ) 2 d x = 7 . Tính tích phân ∫ 1 2 f ( x ) d x
A. I = 7 5
B. I = - 7 5
C. I = - 7 20
D. I = 7 20
Cho hàm số y = f(x) liên tục trên R thỏa mãn điều kiện
2 x [ 1 + f ( x ) ] = [ f ' ( x ) ] 3 , ∀ x ∈ R f ( 0 ) = - 1 Tích phân ∫ 0 1 f ( x ) dx bằng
A. 1 4
B. - 5 6
C. 1 3
D. - 2 3
Cho hàm số y = f (x) thỏa mãn f(0) = 1, f'(x) liên tục trên R và ∫ 0 3 f ' ( x ) dx = 9 .Giá trị của f(3) là
A. 6
B. 3
C. 10
D. 9
Cho hàm số f(x) xác định, có đạo hàm trên [0;1] và f 4 ( 1 ) = 9 , f 4 ( 0 ) = 1 Tính ∫ 0 1 f 3 ( x ) f ' ( x ) d x
A. 8
B. 4
C. 1
D. 2
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a – x) = 1, ∀ x ∈ [0;a]. Tính tích phân I = ∫ 0 a 1 1 + f ( x ) d x