Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mẫn Đan

Cho 0o < x < 90o thỏa mãn
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}=\frac{1}{m+n}\)\(\left(m,n>0\right)\)
Chứng minh \(\frac{sin^{2008}x}{m^{1003}}+\frac{cos^{2008}x}{n^{1003}}=\frac{1}{\left(m+n\right)^{1003}}\)

alibaba nguyễn
27 tháng 7 2017 lúc 13:59

Ta có:

\(\frac{sin^4x}{m}+\frac{cos^4x}{n}\ge\frac{\left(sin^2x+cos^2x\right)^2}{m+n}=\frac{1}{m+n}\)

Dấu = xảy ra khi \(\frac{sin^2x}{m}=\frac{cos^2x}{n}\)

Thế vào điều kiện đề bài ta có:

\(\frac{sin^4x}{m}+\frac{cos^4x}{n}=\frac{1}{m+n}\)

\(\Leftrightarrow\frac{sin^2x}{m}.\left(sin^2x+cos^2x\right)=\frac{1}{m+n}\)

\(\Leftrightarrow\frac{sin^2x}{m}=\frac{1}{m+n}\left(1\right)\)

Ta cần chứng minh

\(\frac{sin^{2008}x}{m^{1003}}+\frac{cos^{2008}x}{n^{1003}}=\frac{1}{\left(m+n\right)^{1003}}\)

\(\Leftrightarrow\frac{sin^{2006}}{m^{1003}}.\left(sin^2x+cos^2x\right)=\frac{1}{\left(m+n\right)^{1003}}\)

\(\Leftrightarrow\left(\frac{sin^2}{m}\right)^{1003}=\frac{1}{\left(m+n\right)^{1003}}\left(2\right)\)

Từ (1) và (2) ta có điều phải chứng minh là đúng.


Các câu hỏi tương tự
Mẫn Đan
Xem chi tiết
Huy Cao
Xem chi tiết
sơn tùng
Xem chi tiết
phan tuấn anh
Xem chi tiết
phan tuấn anh
Xem chi tiết
Tri Khánh
Xem chi tiết
Tran Thi Ha Phuong
Xem chi tiết
nguyễn đình thành
Xem chi tiết
Nguyễn Thiên Nhi
Xem chi tiết