Ta có:
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}\ge\frac{\left(sin^2x+cos^2x\right)^2}{m+n}=\frac{1}{m+n}\)
Dấu = xảy ra khi \(\frac{sin^2x}{m}=\frac{cos^2x}{n}\)
Thế vào điều kiện đề bài ta có:
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}=\frac{1}{m+n}\)
\(\Leftrightarrow\frac{sin^2x}{m}.\left(sin^2x+cos^2x\right)=\frac{1}{m+n}\)
\(\Leftrightarrow\frac{sin^2x}{m}=\frac{1}{m+n}\left(1\right)\)
Ta cần chứng minh
\(\frac{sin^{2008}x}{m^{1003}}+\frac{cos^{2008}x}{n^{1003}}=\frac{1}{\left(m+n\right)^{1003}}\)
\(\Leftrightarrow\frac{sin^{2006}}{m^{1003}}.\left(sin^2x+cos^2x\right)=\frac{1}{\left(m+n\right)^{1003}}\)
\(\Leftrightarrow\left(\frac{sin^2}{m}\right)^{1003}=\frac{1}{\left(m+n\right)^{1003}}\left(2\right)\)
Từ (1) và (2) ta có điều phải chứng minh là đúng.