Ta có:
\(3\left(m^2+n^2\right)=10mn\\ \Leftrightarrow3m^2-10mn+3n^2=0\\ \Leftrightarrow\left(3m^2-mn\right)-\left(9mn-3n^2\right)=0\\ \Leftrightarrow m\left(3m-n\right)-3n\left(3m-n\right)=0\\ \Leftrightarrow\left(3m-n\right)\left(m-3n\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=3n\\n=3m\end{matrix}\right.\)
Vì: \(0< m< n=>n=3m\)
\(A=\dfrac{m+n}{m-n}=\dfrac{m+3m}{m-3m}=\dfrac{4m}{-2m}=-2\)