Giải các bất phương trình sau:
a) (2x − 7)ln(x + 1) > 0;
b) (x − 5)(logx + 1) < 0;
c) 2 log 3 2 x + 5 log 2 2 x + log 2 x – 2 ≥ 0
d) ln(3 e x − 2) ≤ 2x
Tính các nguyên hàm.
a)\(\int\dfrac{2dx}{x^2-5x}=A\ln\left|x\right|+B\ln\left|x-5\right|+C\) . Tìm 2A-3B.
b)\(\int\dfrac{x^3-1}{x+1}\)dx=\(Ax^3-Bx^2+x+E\ln\left|x+1\right|+C\).Tính A-B+E
Biết ∫ 1 3 2 + ln ( x + 3 ) ( x + 1 ) 2 d x = a ln 2 + b ln 3 + c ( a , b , c ∈ ℚ ) . Giá trị 3a-b+2c bằng
A. 7
B. 0
C. -2
D. - 11 2
Cho tích phân ∫ 0 1 3 x 2 - 2 x + ln ( 2 x + 1 ) d x = b ln a - c với a, b, c là các số hữu tỉ, thì a + b + c bằng
A. 3/2
B. 7/2
C. 2/3
D. -4/3
Trong các hàm số dưới đây, hàm số nào là một nguyên hàm của hàm số f x = 1 1 + sinx
a) F(x) = 1 - cos x 2 + π 4
b) G(x) = 2 tan x 2
c) H(x) = ln(1 + sinx)
d) K(x) = 2 1 - 1 1 + tan x 2
Tính giá trị bằng số của biểu thức ln(1/e)
A. 1 B. -1
C. 1/e D. -1/e
Tính giá trị bằng số của biểu thức ln(1/e)
A. 1 B. -1
C. 1/e D. -1/e
Giả sử F(x) là một nguyên hàm của hàm số thỏa mãn F(-2) + F(1) = 0 và F(-1) + F(2) = 0, với a,b là các số hữu tỷ.
Giá trị của 3a+6b bằng
A. -4
B. 5
C. 0
D. -3
Cho phương trình m . l n 2 ( x + 1 ) - ( x + 2 - m ) l n ( x + 1 ) - x - 2 = 0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0 < x 1 < 2 < 4 < x 2 là khoảng . Khi đó a thuộc khoảng
Giả sử F(x) là một nguyên hàm của f ( x ) = ln ( x + 3 ) x 2 sao cho F(-2)+F(1)=0. Giá trị của F(-1)+F(2) bằng
B. 0