Giả sử F(x) là một nguyên hàm của hàm số thỏa mãn F(-2) + F(1) = 0 và F(-1) + F(2) = 0, với a,b là các số hữu tỷ.
Giá trị của 3a+6b bằng
A. -4
B. 5
C. 0
D. -3
Cho hàm số f(x) xác định trên ( - ∞ ; - 1 ) ∪ ( 0 ; + ∞ ) và f ' ( x ) = 1 x 2 + x ; f ( 1 ) = ln 1 2 Biết ∫ 1 2 x 2 + 1 f ( x ) d x = a ln 3 + b ln 2 + c với a,b,c là các số hữu tỉ. Giá trị biểu thức a+b+c bằng
A. 27/2
B. 1/6
C. 7/6
D. -3/2
Tích phân ∫ x ln ( x + 3 ) d x = a + b ln 2 + c ln 5 với a,b,c là các số hữu tỷ. Giá trị của abc bằng
A. -30
B. -10
C. -20
D. -15
Biết ∫ π 4 π 3 cos 2 x + sin x cos x + 1 cos 4 x + sin x cos 3 x d x = a + b ln 2 + c ln ( 1 + 3 ) ,
với a, b, c là các số hữu tỉ. Giá trị của abc bằng:
A. 0
B. -2
C. -4
D. -6
Cho ∫ 0 1 x ln ( 2 + x 2 ) d x = a ln 3 + b ln 2 + c với a,b,c là các số hữu tỷ. Giá trị của a+b+c bằng
A. 2
B. 1
C. 1,5
D. 0
Cho ∫ 1 3 3 + ln x ( x + 1 ) 2 d x = a ln 3 + b ln 2 + c với a , b , c là các số hữu tỉ. Giá trị của a 2 + b 2 + c 2 bằng
Với giá trị nào của x thì đồ thị hàm số y = 2 / 3 x nằm phía trên đường thẳng y = 1?
A. x > 0 B. x < 0
C. x = 0 D. x < 1
Cho ∫ 1 e ( x + 2 ) ln x d x = a e 2 + b với a, b là các số hữu tỉ. Giá trị biểu thức a + b bằng
A. 10
B. 5 2
C. 2
D. 13 4
Giải các bất phương trình sau:
a) (2x − 7)ln(x + 1) > 0;
b) (x − 5)(logx + 1) < 0;
c) 2 log 3 2 x + 5 log 2 2 x + log 2 x – 2 ≥ 0
d) ln(3 e x − 2) ≤ 2x