\(\dfrac{u_1}{1-q}=2\Rightarrow q=\dfrac{2-u_1}{2}\)
\(u_1+u_1q+u_1q^2=\dfrac{9}{4}\)
\(\Rightarrow u_1+\dfrac{u_1\left(2-u_1\right)}{2}+\dfrac{u_1\left(2-u_1\right)^2}{4}=\dfrac{9}{4}\)
\(\Rightarrow u_1^3-6u_1^2+12u_1-9=0\)
\(\Rightarrow u_1=3\)
\(\dfrac{u_1}{1-q}=2\Rightarrow q=\dfrac{2-u_1}{2}\)
\(u_1+u_1q+u_1q^2=\dfrac{9}{4}\)
\(\Rightarrow u_1+\dfrac{u_1\left(2-u_1\right)}{2}+\dfrac{u_1\left(2-u_1\right)^2}{4}=\dfrac{9}{4}\)
\(\Rightarrow u_1^3-6u_1^2+12u_1-9=0\)
\(\Rightarrow u_1=3\)
Cho cấp số nhân lùi vô hạn, biết tổng S= 6 và tổng hai số hạng đầu u 1 + u 2 = 4 1 2
Tìm công bội của cấp số nhân đó?
A. q = ± 1 3
B. q = ± 1 2
C. q = ± 1 2
D. Đáp án khác
Một cấp số nhân ( u n ) có u 1 = 2 , u 2 = - 2 . Tổng của 11 số hạng đầu tiên của cấp số nhân đó là
A. 0
B. 2
C. 1
D. –2
Cho cấp số nhân (un) có hai số hạng đầu tiên là u1 = −2 và u2 = 8. Công bội của cấp số nhân đã cho bằng
A. 16
B. 4
C. - 4
D. - 16
Cấp số nhân ( u n ) có u 1 + u 5 = 51 u 2 + u 6 = 102
a) Tìm số hạng đầu và công bội của cấp số nhân:
b) Hỏi tổng của bao nhiêu số hạngđầu tiên sẽ bằng 3096?
c) Số 12288 là số hạng thứ mấy?
Cho cấp số nhân ( u n ) có số hạng đầu u 1 = 6 và công bội q = 2. Số hạng thứ tư của cấp số nhân đó bằng
A. 24
B. 96
C. 12
D. 48
Cho cấp số nhân (un) có số hạng đầu u1 = 3 , công bội q = -2 . Tính tổng 10 số hạng đầu tiên của (un).
Cho cấp số nhân ( u n ) có số hạng đầu u 1 = 2 và số hạng thứ ba là u 3 = 18 . Giá trị của u 6 bằng
A. 486 hoặc -486
B. 486
C. 972
D. 42
Cho cấp số nhân ( u n ) có u 1 = - 3 và q = - 2 . Tính tổng 10 số hạng đầu liên tiếp của cấp số nhân
A. S 10 = - 511
B. S 10 = 1023
C. S 10 = 1025
D. S 10 = - 1025
Cho cấp số nhân ( u n ) có số hạng đầu u 1 = 2 và công bội q = 5 . Giá trị của u 6 u 8 bằng
A. 2 . 5 6
B. 2 . 5 7
C. 2 . 5 8
D. 2 . 5 5