Phương pháp:
- Tính công bội q, từ đó suy ra u 6
- Sử dụng công thức u n = u 1 q n - 1
Cách giải:
Ta có: u 3 = u 1 q 2 ⇔ q = ± 3
Vậy với q = 3 thì u 6 = u 1 . q 5 = 486
Với q = - 3 thì u 6 = u 1 . q 5 = - 486
Chọn: A
Phương pháp:
- Tính công bội q, từ đó suy ra u 6
- Sử dụng công thức u n = u 1 q n - 1
Cách giải:
Ta có: u 3 = u 1 q 2 ⇔ q = ± 3
Vậy với q = 3 thì u 6 = u 1 . q 5 = 486
Với q = - 3 thì u 6 = u 1 . q 5 = - 486
Chọn: A
Bài 1: Cho cấp số nhân có: u3 = 18 và u6 = -486.
Tìm số hạng đầu tiên và công bội q của cấp số nhân đó
Bài 2: Tìm u và q của cấp số nhân (un) biết:
Bài 3: Tìm cấp số nhân (un) biết cấp số đó có 4 số hạng có tổng bằng 360 và số hạng cuối gấp 9 lần số hạng thứ hai.
Cho biết một cấp số nhân, hiệu của số hạng thứ ba và số hạng thứ hai bằng 12 và nếu thêm 10 vào số hạng thứ nhất, thêm 8 vào số hạng thứ 2 còn giữa nguyên số hạng thứ 3 thì ba số mới lập thành một cấp số cộng. Hãy tính tổng năm số hạng đầu của cấp số nhân đó .
Ba số có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, hoặc là các số hạng thứ 2, thứ 9 và thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu của cấp số cộng để tổng của chúng là 820?
Ba số phân biệt có tổng 217, là các số hạng liên tiếp của một cấp số nhân, theo thứ tự đó chúng lần lượt là số hạng thứ 2, thứ 9 và thứ 44 của một cấp số cộng. Biết tổng của n số hạng đầu tiên của cấp số cộng là 820, khi đó n bằng
A. 21
B. 42
C.20
D. 17
Tìm số hạng đầu của cấp số nhân có bốn số hạng, biết tổng ba số hạng đầu bằng 16 4 9 , đồng thời theo thứ tự, chúng là số hạng thứ nhất, thứ tư và thứ tám của một cấp số cộng.
A. 4
B. 16/9
C. 2/3
D. -1
Cho cấp số nhân ( u n ) có số hạng đầu u 1 = 6 và công bội q = 2. Số hạng thứ tư của cấp số nhân đó bằng
A. 24
B. 96
C. 12
D. 48