a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
góc BME=góc CMF
=>ΔBEM=ΔCFM
=>BE=CF và ME=MF
b: Xét ΔBMF và ΔCME có
MB=MC
góc BMF=góc CME
MF=ME
=>ΔBMF=ΔCME
c: ΔBMF=ΔCME
=>góc MBF=góc MCE
=>BF//CE
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
góc BME=góc CMF
=>ΔBEM=ΔCFM
=>BE=CF và ME=MF
b: Xét ΔBMF và ΔCME có
MB=MC
góc BMF=góc CME
MF=ME
=>ΔBMF=ΔCME
c: ΔBMF=ΔCME
=>góc MBF=góc MCE
=>BF//CE
Cho tam giác ABC ( AB < AC ), M là trung điểm của BC. Kẻ BE và CF vuông góc với AM (E, F thuộc đường thẳng AM)
a) Chứng minh: BE = CF
b) Chứng minh: tam giác BMF= tam giác CME
c) BF//CE
cho tam giác ABC có AB<AC. Gọi M là trung điểm của BC. Kẻ BE và CF vuông góc với AM (E thuộc AM,F thuộc AM)
a)chứng minh BE=CF
b)chứng minh M là trung Điểm của EF
cho tam giác ABC . Gọi M là trung điểm của BC. trên tia đối của tia MA lấy điểm D sao cho MA=MD.
a) Chứng minh tam giác ABM=tam giác DCM và AB///DC
b) Kẻ BE vuông góc với AM( E thuộc AM ), CF vuông góc với DM( F thuộc DM ). Chứng minh: M là trung điểm của EF
Cho tam giác ABC cân tại A (góc A nhọn). kẻ BE vuông AC, CF vuông AB (E thuộc AC, F thuộc AB).
a, Chứng minh tam giác ABC = tam giác ACF.
b, gọi M là giao điểm của BE và CF, chứng minh AM là tia phân giác góc BAC
Giúp em với ạ em đg cần gấp. Cảm mơn mn trc
Cho tam giác ABC có AM là đường trung tuyến. Kẻ BE và CF vuông góc với đường thẳng AM ở E và F,
1) Chứng minh BE = CF
2) Chứng minh BF // CE
3) Chứng minh AE + AF= 2AM
B1 : Cho tam giác ABC vuông CÂN TẠI a . Gọi m là trung điểm chủa BC
a, Chứng minh AM vuông góc với BC
b, Trên đoạn BM lấy điểm D . Kẻ BE và CF cùng Vuông góc với đường thẳng AD(E,F thuộc AD ) Chứng minh BE = À
c, Chứng minh tam giác MÈ là tam giác vuông
Cho tam giác ABC cân tại A và các điểm E, F lần lượt nằm trên các cạnh AC, AB sao cho BE vuông góc với AC, CF vuông góc với AB,BE cắt BF tại M. a.Chứng minh rằng BE = CF b. chứng minh AM là đường trung trực của BC(kẻ hình , 0 cần viết giả thiết kết luận)
Cho tam giác ABC cân tại A. Kẻ BE, CF lần lượt vuông góc với AC và AB
(E thuộc AC, F thuộc AB )
a/ Chứng minh: tam giác ABE = tam giác ACF .
b/ Gọi I là giao điểm của BE và CF. Chứng minh: tam giác BIC là tam giác cân.
c/ Gọi M là trung điểm của BC. Chứng minh: 3 điểm A, I, M thẳng hàng
Vẽ hình luôn cho mik nha, cảm ơn rất nhiều
Cho tam giác ABC có AB=AC. Trên tia đối của tia BC lấy điểm M và trên tia đối của CB lấy điểm N sao cho BM=CN.
a) Chứng minh AM=AN
b) Kẻ BE vuông góc với AM, CF vuông góc với AN (E thuộc AM, F thuốc AN). Chứng minh tam giác BME= tam giác CNF
c) EB và FC kéo dài cắt nhau tại O. Chứng minh AO là phân giác của góc MAN.
d) Qua M kẻ đường thẳng vuông góc với AM, qua N kẻ đường thẳng vuông góc với AN, chúng cắt nhau tại H. Chứng minh 3 điểm A,O,H thẳng hàng