a: Xét (O) có
CA,CE là các tiếp tuyến
Do đó: CA=CE và OC là phân giác của góc AOE
Xét (O) có
DE,DB là các tiếp tuyến
Do đó: DE=DB và OD là phân giác của góc EOB
Ta có: CA+DB
=CE+DE
=CD
b: Ta có: OC là phân giác của góc AOE
=>\(\widehat{AOE}=2\cdot\widehat{EOC}\)
OD là phân giác của góc EOB
=>\(\widehat{EOB}=2\cdot\widehat{EOD}\)
Ta có: \(\widehat{AOE}+\widehat{BOE}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{EOC}+2\cdot\widehat{EOD}=180^0\)
=>\(2\cdot\left(\widehat{EOC}+\widehat{EOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=90^0\)