Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Schatz

Câu S. (3 điểm) Cho AABC(AB < AC) nhọn nội tiếp (O) có AH là đường cao và I là tâm đường tròn nội tiếp AABC . Gọi T,D lần lượt là giao điểm của Al với BC và (O). a) Chứng minh: OD vuông góc với BC và tam giác IBD cân. ' b) Qua D vẽ đường thẳng vuông góc với AD, cắt AH và BC lần lượt tại P,R. Chứng minh: IP L IR. c) Vẽ IK L BC tại K,DK cắt AH tại S. Chứng minh: tứ giác SIDP nội tiếp.

Tô Mì
15 tháng 5 2023 lúc 16:07

(a) + Ta có : \(OB=OC=R\Rightarrow O\) thuộc đường trung trực của \(BC.\)

Do \(I\) là tâm đường tròn nội tiếp \(\Delta ABC\) nên \(AI\) hay \(AD\) là đường phân giác của 

\(\hat{BAC}\Rightarrow\hat{BAD}=\hat{DAC}\Rightarrow\stackrel\frown{BD}=\stackrel\frown{CD}\) (các góc nội tiếp bằng nhau chắn các cung bằng nhau) \(\Rightarrow BD=CD\Rightarrow D\) thuộc đường trung trực của \(BC\).

Từ đó, suy ra \(OD\) là đường trung trực của \(BC\Rightarrow OD\perp BC\) (đpcm).

+ Ta có : \(\hat{DBC}=\hat{DAC}=\hat{BAD}\) (hai góc nội tiếp cùng chắn cung \(CD\) và chứng minh trên). Mà : \(\hat{ABI}=\hat{IBC}\) (do \(I\) là tâm đường tròn nội tiếp \(\Delta ABC\Rightarrow BI\) là phân giác của \(\hat{ABC}\)).

Ta sẽ có được : \(\hat{DBC}+\hat{IBC}=\hat{BAD}+\hat{ABI}\)

\(\Leftrightarrow\hat{IBD}=\hat{BID}\) (\(\hat{BID}\) là góc ngoài của \(\Delta ABI\))

\(\Rightarrow\Delta IBD\) cân tại \(D\) (đpcm).

 

(b) Xét \(\Delta PAD,\Delta DTR:\) \(\left\{{}\begin{matrix}\hat{PDA}=\hat{TDR}=90^o\left(gt\right)\\\hat{PAD}=\hat{DRT}\end{matrix}\right.\) (cùng phụ với \(\hat{HTA}=\hat{DTR}\) (đối đỉnh))

 \(\Rightarrow\Delta PAD\sim\Delta DTR\left(g.g\right)\Leftrightarrow\dfrac{PD}{DT}=\dfrac{AD}{DR}\Leftrightarrow DT.DA=PD.DR\left(1\right).\)

Xét \(\Delta DBT,\Delta DAB:\left\{{}\begin{matrix}\hat{ADB}\text{ chung}\\\hat{DBT}=\hat{DAB}\left(=\hat{BAD}\right)\end{matrix}\right.\)

\(\Rightarrow\Delta DBT\sim\Delta DAB\left(g.g\right)\Leftrightarrow\dfrac{DT}{DB}=\dfrac{DB}{DA}\Leftrightarrow DB^2=DT.DA\left(2\right).\)

Từ \(\left(1\right),\left(2\right)\Rightarrow PD.DR=DB^2=DI^2\) (\(\Delta IDB\) cân tại \(D\left(cmt\right)\Rightarrow DB=DI\)) \(\Leftrightarrow\dfrac{PD}{DI}=\dfrac{DI}{DR}\).

Xét \(\Delta PDI,\Delta IDR:\left\{{}\begin{matrix}\dfrac{PD}{DI}=\dfrac{DI}{DR}\left(cmt\right)\\\hat{PDI}=\hat{IDR}=90^o\end{matrix}\right.\)

\(\Rightarrow\Delta PDI\sim\Delta IDR\left(c.g.c\right)\Leftrightarrow\hat{IPD}=\hat{DIR}\).

Lại có trong \(\Delta IDP\) vuông tại \(D\) : \(\hat{IPD}+\hat{PID}=90^o\) (hai góc phụ nhau), suy ra : \(\hat{DIR}+\hat{PID}=90^o=\hat{PIR}\)

Vậy : \(IP\perp IR\) (đpcm).

 

Tô Mì
15 tháng 5 2023 lúc 16:13

(c) Do \(\left\{{}\begin{matrix}IK\perp BC\\AH\perp BC\end{matrix}\right.\left(gt\right)\Rightarrow IK\left|\right|AH\Rightarrow\dfrac{DI}{DA}=\dfrac{DK}{DS}\) (hệ quả của định lí Ta-lét) \(\Rightarrow\dfrac{DB}{DA}=\dfrac{DK}{DS}\). (do \(\Delta IBD\) cân tại \(D\left(cmt\right)\) nên \(ID=DB\)).

Ta cũng có ở câu (b) : \(\Delta DBT\sim\Delta DAB\left(g.g\right)\Rightarrow\dfrac{DB}{DA}=\dfrac{DT}{DB}=\dfrac{DT}{DI}\).

Từ hai điều trên suy ra : \(\dfrac{DK}{DS}=\dfrac{DT}{DI}\).

Xét \(\Delta DKT,\Delta DSI:\left\{{}\begin{matrix}\dfrac{DK}{DS}=\dfrac{DT}{DI}\left(cmt\right)\\\hat{D}\text{ chung}\end{matrix}\right.\)

\(\Rightarrow\Delta DKS\sim\Delta DSI\left(c.g.c\right)\Rightarrow\hat{DKT}=\hat{DSI}\). Hai góc này ở vị trí đồng vị nên \(TK\left|\right|SI\) hay \(BC\left|\right|SI\).

Ta lại có : \(AH\perp BC\Rightarrow SI\perp AH\Rightarrow\hat{PSI}=90^o.\)

Xét tứ giác \(SIDP:\hat{PSI}+\hat{PDI}=90^o+90^o=180^o\). Đây là hai góc đối nhau, vì vậy, tứ giác \(SIDP\) nội tiếp được một đường tròn (đpcm).


Các câu hỏi tương tự
Nguyễn Thảo Nguyên
Xem chi tiết
trần quốc huy
Xem chi tiết
Mèo con dễ thương
Xem chi tiết
Diệu Trần Thị Huyền
Xem chi tiết
Việt Thắng
Xem chi tiết
27.Trúc Quyên
Xem chi tiết
Jan Solo
Xem chi tiết
VõThị Quỳnh Giang _
Xem chi tiết
phạm ngọc nhi
Xem chi tiết