Cho tam giác ABC vuông tại A, AH là đường cao. AB=15cm, AH=12cm. a) Chứng minh tam giác HBA đồng dạng tam giác ABC b) Tính BH, BC và Diện tích tam giác AHC c) Gọi D,E,F lần lượt là trung điểm của AB,AH,BC. FD cắt CE tại K. Chứng minh KB song song AH
Cho tam giác ABC vuông tại A có AB = 6cm ,AC=8cm,đường cao AH
a) Chứng minh tam giác ABH và tam giác CBA đồng dạng
b) Tính BC , AH
c) Gọi M,N lần lượt là hình chiếu của H trên AB và AC. I là trung điểm của BC chứng minh rằng AI vuông góc với MN
Cho tam giác ABC vuông tại A, AB = 9cm, BC = 15cm, đường cao AH a) Chứng minh tam giác AHB ~tam giác CAB, tam giác CHA tam giác CAB b) Chứng minh AH = BH. CH. Tính BH, CH, NH c) Tính tỉ số diện tích tam giác CHA và tam giác AHE
cho hình chữ nhật ABCD có AB= 12cm; BC=9cm. Gọi H là đường vuông góc kẻ từ A đến BD
a. chứng minh các tam giác AHB và BCD đồng dạng
b. tính độ dài AH
c. tính diện tích tam giác AHB
Cho tam giác ABC vuông tai A(AC>AB) , đường cao AH. Trên HC lấy điểm D sao cho HD = HA. Đường vuông gác với BC tại D cắt AC tại E.
a) Chứng minh tam giác BEC đồng dạng với tam giác ADC. Tính BE theo AB = m
b) Gọi M là trung điểm của BE. Chứng minh tam giác BHM đồng dạng với tam giác BEC. Tính góc AHM.
c) vẽ tia AM cắt BC tại G. Chứng minh rằng GB/BC = HD/(AH +HC)
Cho tam giác ABC vuông tại A, đường cao AH. a, Chứng minh tam giác AHB đồng dạng với tam giác CAB b, Cho AB=12 cm, AC=16 cm. Tính độ dài AH? c, Kẻ DH vuông góc với AC tại D. Gọi M là trung điểm của AB; CM cắt HD tại I. Chứng minh I là trung điểm của HD
Cho tam giác ABC vuông tại A, đường cao AH (AB<AC). Gọi M và N lần lượt là chân đường vuông góc hạ từ H xuống AB,AC. Gọi K là trung điểm BC. I là giao điểm AK với MN
a) Chứng minh: tam giác AHB ∼ tam giác CHA
b) Cho AB=3, AC=4. Tính AH
c) Chứng minh: AM.BM+AN.CN=BH.CH
d) Chứng minh: \(\dfrac{KH}{BH}=2\left(\dfrac{BK}{AB}\right)^2-1\)
e) Chứng minh: \(\dfrac{1}{HA}=\dfrac{1}{HB}+\dfrac{1}{HC}\)
Cho tam giác ABC vuông tại A, đường cao AH. Cho AM là đường trung tuyến. Biết BH = 9cm, CH = 16cm.
a) Tính diện tích tam giác AHM, chu vi và diện tích tam giác ABC.
b) Gọi Q, P lần lượt là trung điểm của BH, AH. Chứng minh: Tam giác ABQ đồng dạng với CAP
c)Kẻ MI vuông góc với AC. Đường trung trực của BC cắt AB tại N, AC tại D. Gọi O là trung điểm của MI; DO cắt BI tại K. Chứng minh:Tam giác ABI đồng dạng với IDO.
Cho tam giác ABC vuông tại A, đường cao AH. Cho AM là đường trung tuyến. Biết BH = 9cm, CH = 16cm.
a) Tính diện tích tam giác AHM, chu vi và diện tích tam giác ABC.
b) Gọi Q, P lần lượt là trung điểm của BH, AH. Chứng minh: Tam giác ABQ đồng dạng với CAP
c)Kẻ MI vuông góc với AC. Đường trung trực của BC cắt AB tại N, AC tại D. Gọi O là trung điểm của MI; DO cắt BI tại K. Chứng minh:Tam giác ABI đồng dạng với IDO.