a: Thay m=4 vào phương trình, ta được:
\(x^2-4x+4-1=0\)
=>\(x^2-4x+3=0\)
=>(x-3)(x-1)=0
=>\(\left[{}\begin{matrix}x-3=0\\x-1=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b: \(x^2-4x+m-1=0\)
\(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(m-1\right)\)
\(=16-4m+4=20-4m\)
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
=>-4m+20>0
=>-4m>-20
=>m<5
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
\(x_1\left(x_1+2\right)+x_2\left(x_2+2\right)=20\)
=>\(\left(x_1^2+x_2^2\right)+2\left(x_1+x_2\right)=20\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=20\)
=>\(4^2-2\left(m-1\right)+2\cdot4=20\)
=>\(20-2\left(m-1\right)=20\)
=>2(m-1)=0
=>m-1=0
=>m=1(nhận)