Câu 4(3,0đ). Cho tam giác ABC có góc A = 90 độ ngoại tiếp đường tròn (I;r). Gọi D, E, F lần lượt là các tiếp điểm trên BC, AB, AC.
a) Chứng minh tứ giác AEIF là hình vuông.
b) Gọi M, N thứ tự là tâm các đường tròn ngoại tiếp các tam giác ABD và ACD. Chứng
minh tứ giác AMDN nội tiếp.
c ) gọi S là diện tích của tam giác ABC . Chứng minh \(\sqrt{2S}\) -r ≤ \(\dfrac{BC}{2}\)
Mọi người giúp em phần c với ạ em cảm ơn mọi người nhiều
a: góc A=góc IFA=góc IEA=90 độ
=>AEIF là hcn
mà IF=IE
nên AEIF là hv
b: ΔABD vuông tại D
=>M là trung đuiểm của AB
ΔACD vuông tại D
=>N là trung điểm của AC
Xét ΔNAM và ΔNDM có
NA=ND
MA=MD
NM chung
=>ΔNAM=ΔNDM
=>góc NDM=góc NAM=90 độ
=>AMDN nội tiếp