`a)7x^2y-14xy`
`=7xy(x-2)`
`b)xy-2x-5y+10`
`=xy-2x-(5y-10)`
`=x(y-2)-5(y-2)`
`=(y-2)(x-5)`
`c)x^2-10x-y^2+25`
`=(x^2-10x+25)-y^2`
`=(x-5)^2-y^2`
`=(x-5-y)(x-5+y)`
`a)7x^2y-14xy`
`=7xy(x-2)`
`b)xy-2x-5y+10`
`=xy-2x-(5y-10)`
`=x(y-2)-5(y-2)`
`=(y-2)(x-5)`
`c)x^2-10x-y^2+25`
`=(x^2-10x+25)-y^2`
`=(x-5)^2-y^2`
`=(x-5-y)(x-5+y)`
Phân tích các đa thức sau thành nhân tử:
a) 𝑥2−19𝑥
b) 𝑥2−2𝑥𝑦+ 𝑦2 - 100
c) xz + yz - 5(x + y)
d) 𝑥2+3𝑥+𝑥𝑦+3𝑦
Giúp em cách làm với ạ
Hãy chứng minh đẳng thức sau:
a. (𝑎+𝑏)2−(𝑎+𝑏)(𝑎−𝑏)=2(𝑎+𝑏)
b. 𝑥2+𝑦2=(𝑥−𝑦)2+2𝑥𝑦
c. 𝑥2+𝑦2=(𝑥+𝑦)2−2𝑥𝑦
Biến đổi mỗi phân thức sau thành một phân thức bằng nó có tửlà đa thức A cho trước:
a)4𝑥+3 / 𝑥2 - 5 ; A=12x2+9x( gợiý: Phân tích đa thức A thành nhân tử)
b)8𝑥2 −8𝑥 + 2 / (4𝑥−2)(15−𝑥) ; 𝐴=1−2𝑥 (gợi ý: Phân tích phân thức thành nhân tửrồi rút gọn
1) Làm tính nhân
a) 𝑥. (𝑥2 – 5) | b) 3𝑥𝑦(𝑥2 − 2𝑥2𝑦 + 3) |
c) (2𝑥 − 6)(3𝑥 + 6) 2) Tính (áp dụng Hằng đẳng thức) | d) (𝑥 + 3𝑦)(𝑥2 − 𝑥𝑦) |
a) (2𝑥 + 5)(2𝑥 − 5)
| b) (𝑥 − 3)2 c) (4 + 3𝑥)2 |
d) (𝑥 − 2𝑦)3 | e) (5𝑥 + 3𝑦)3 |
f) (5 − 𝑥)(25 + 5𝑥 + 𝑥2) | g) (2𝑦 + 𝑥)(4𝑦2 − 2𝑥𝑦 + 𝑥2) |
3) Phân tích các đa thức sau thành nhân tử
a) 𝑥2 + 2𝑥 | b) 𝑥2 − 6𝑥 + 9 |
c) 5(𝑥 – 𝑦) – 𝑦(𝑦 – 𝑥) | d) 2𝑥 − 𝑦2 + 2𝑥𝑦 − 𝑦 |
a) 6𝑥3𝑦4 + 12𝑥2𝑦3 − 18𝑥3𝑦2 | b) 𝑥2 − 2𝑥𝑦 + 𝑦2 − 36 |
c) 5𝑥2 + 3𝑥 − 5𝑥𝑦 − 3𝑦 | d) 𝑥2 − 5𝑥 − 6 |
e) 𝑥3 − 3𝑥2 − 4𝑥 + 12 4) Rút gọn biểu thức | f) 𝑥3 + 27 + (𝑥 + 3)(𝑥 − 9) |
a) (𝑥2 + 1)(𝑥 − 3) − (𝑥 − 3)(𝑥2 + 3𝑥 + 9)
b) (𝑥 + 2)2 + 𝑥(𝑥 + 5)
c) (5𝑥 + 4𝑦)(5𝑥 − 4𝑦) − 24𝑥2 + 15𝑦2 5) Tìm x, biết:
a) 2𝑥(𝑥2 − 9) = 0 b) 2𝑥(𝑥 − 2021) − 𝑥 + 2021 = 0
c) 4𝑥2 − 16𝑥 = 0 d) (3𝑥 + 7)2 − (𝑥 + 1)2 = 0
6) Làm tính chia
a) 14𝑥3𝑦 ∶ 10𝑥2 b) (𝑥3 − 27) ∶ (3 − 𝑥)
c) 8𝑥3𝑦3𝑧 ∶ 6𝑥𝑦3 d) (𝑥2 − 9𝑦2 + 4𝑥 + 4) ∶ (𝑥 + 3𝑦 + 2)
7) a) Tìm giá trị nhỏ nhất của biểu thức: 𝐴 = (𝑥 − 1)(𝑥 − 3) + 11
b) Tìm giá trị lớn nhất của biểu thức: 𝐵 = 5 − 4𝑥2 + 4𝑥
c) Cho 𝑥 – 𝑦 = 2. Tìm giá trị lớn nhất của đa thức 𝐵 = 𝑦2 − 3𝑥2
8) Tìm số để đa thức 𝑥3 − 3𝑥2 + 5𝑥 + 𝑎 chia hết cho đa thức 𝑥 − 2 9) Áp dụng kết quả bài tập 31 – SGK – tr.16, hãy:
a) Tính 𝑎3 − 𝑏3 biết 𝑎. 𝑏 = 8 và 𝑎 − 𝑏 = −6
b) Tính 𝑎3 + 𝑏3 biết 𝑎. 𝑏 = −12 và 𝑎 + 𝑏 = 1
c) Tính 𝑎3 + 𝑏3 biết 𝑎2 + 𝑏2 = 30 và 𝑎 + 𝑏 = 2
Phân tích đa thức 8𝑥 3 -1 thành nhân tử
A.(2𝑥 − 1)(4𝑥 2+2x+1)
B.(2𝑥 + 1)(4𝑥 2+2x+1)
C.(2𝑥 − 1)(4𝑥 2 - 2x+1)
D.(2𝑥 − 1)(4𝑥 2+4x+1)
Câu 17 Phân tích đa thức 5x2 -4x +10xy-8y thành nhân tử
A..(5x-4)(x-2y)
B. (x+2y)(5x-4)
C.(5x-2y)(x+4y)
D.(5x+4)(x-2y)
Câu 18 Phân tích đa thức 8x3 + 12x2y + 6xy2 + y3 thành nhân tử :
A. (2x + y)3
B.(2x - y)3
C. (2x + y3 ) 3
D. (2x3 + y)3
Câu 19 Tìm x, biết (x + 2) . ( x – 1 ) – x 2 = –1
A. x = –2 4
B. x = 2
C. x = 1
D. x = –1
Câu 20 Tìm x biết x . ( x – 3) = x2 + 6
A. x = 2
B. x = –2
C. x = 4
D. x = 6
Câu 21 Tìm x biết : (𝑥 + 3)(𝑥 − 3) − 𝑥(𝑥 − 3) =0
A. x = 3.
B. x= -3
C. x=1
D. x=0
Câu 1.(1,5 điểm) Phân tích các đa thức sau thành nhân tử:
a) 15x – 5xy b) (x2 + 1)2 – 4x2 c) x2 – 10x – 9y2 + 25
Phân tích các đa thức sau thành nhân tử:
b ) 4 x 2 – 25 + 2 x + 5 2
Câu 1
Rút gọn các biểu thức sau:
a. 2x(3x + 2) - 3x(2x + 3)
b. (x + 2)3 + (x - 3)2 - x2(x + 5)
c. (3x3 - 4x2 + 6x) : 3x
Câu 2
Phân tích đa thức sau thành nhân tử: 2x3 - 12x2 + 18x
Câu 3
Tìm x, biết: 3x(x - 5) - x2 + 25 = 0
Câu 4 Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Câu 5 Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5y2 + 4xy + 6x + 16y + 32
Phân tích đa thức sau thành nhân tử:
-x^2+10x-25