b) 4x2 - 25 + (2x + 5)2
= (2x + 5)(2x - 5) + (2x + 5)2
= (2x + 5)(2x - 5 + 2x + 5)
= 4x(2x + 5)
b) 4x2 - 25 + (2x + 5)2
= (2x + 5)(2x - 5) + (2x + 5)2
= (2x + 5)(2x - 5 + 2x + 5)
= 4x(2x + 5)
Phân tích các đa thức sau thành nhân tử:
a) 4 x 2 - 4x + 1; b) 16 y 3 - 2 x 3 - 6x(x + 1) - 2;
c) 2 x 2 +7x + 5; d) x 2 - 6xy - 25 z 2 +9 y 2
Phân tích các đa thức sau thành nhân tử
b, x^3 - 2x^2 - 4xy^2 + x
c, (x+2) (x + 3) (x+4) (x+5) -8
Phân tích các đa thức sau thành nhân tử :
a/ 10x(x−y)−6y(y−x)10x(x−y)−6y(y−x)
b/ 14x2y−21xy2+28x3y214x2y−21xy2+28x2y2
c/ x2−4+(x−2)2x2−4+(x−2)2
d/ (x+1)2−25(x+1)2−25
Phân tích các đa thức sau thành nhân tử:
a) 4 x 2 - 6x; b) x 3 y - 2 x 2 y 2 + 5xy;
c) 2 x 2 (x +1) + 4x(x +1); d) 2 5 x(y - 1) - 2 5 y(1 - y).
Câu 1
Rút gọn các biểu thức sau:
a. 2x(3x + 2) - 3x(2x + 3)
b. (x + 2)3 + (x - 3)2 - x2(x + 5)
c. (3x3 - 4x2 + 6x) : 3x
Câu 2
Phân tích đa thức sau thành nhân tử: 2x3 - 12x2 + 18x
Câu 3
Tìm x, biết: 3x(x - 5) - x2 + 25 = 0
Câu 4 Cho hình bình hành ABCD (AB > AD). Gọi E và K lần lượt là trung điểm của CD và AB. BD cắt AE, AC, CK lần lượt tại N, O và I. Chứng minh rằng:
a. Tứ giắc AECK là hình bình hành.
b. Ba điểm E, O, K thẳng hàng.
c. DN = NI = IB
d. AE = 3KI
Câu 5 Cho x, y là hai số thực tùy ý, tìm giá trị nhỏ nhất của biểu thức sau:
P = x2 + 5y2 + 4xy + 6x + 16y + 32
Bài 3: Phân tích các đa thức sau thành nhân tử:
a) x2 + 10x + 25. b) 8x - 16 - x2
c) x3 + 3x2 + 3x + 1 d) (x + y)2 - 9x2
e) (x + 5)2 – (2x -1)2
Bài 4: Tìm x biết
a) x2 – 9 = 0 b) (x – 4)2 – 36 = 0
c) x2 – 10x = -25 d) x2 + 5x + 6 = 0
phân tích các đa thức sau đây thành nhân tử
a, 16(4x+5)^2 - 25 (2x+2)^2
b,(x-y+4)^2 - ( 2x+ 3y -1 )^2
c,(x+1)^4 - (x-1)^4
d, x^6 - y^5
làm ơn giải chi tiết giúp mik
Phân tích các đa thức sau thành nhân tử:
a/ x4+4
b/(x+2)(x+3)(x+4)(x+5)-24.
Phân tích đa thức thành nhân tử: \(\left(x+5\right)^2+4\left(x+5\right)\left(x-5\right)+4\left(x^2-10x+25\right)=0\)