a, (x+2)(x−2)−(x−3)(x+1)(x+2)(x-2)-(x-3)(x+1)
=x2−4−(x2−3x+x− 3)=x2-4-(x2-3x+x- 3)
=x2− 4−x2+2x+3=x2- 4-x2+2x+3
=2x−1=2x-1
2.
a, x2−4+(x−2)2x2-4+(x-2)2
=(x−2)(x+2) +(x−2)2=(x-2)(x+2) +(x-2)2
=(x−2)(x+2+x−2)=(x-2)(x+2+x-2)
=2x(x−2)=2x(x-2)
b, x3−2x2+x−xy2x3-2x2+x-xy2
=x(x2− 2x+1−y2)=x(x2- 2x+1-y2)
=x[(x−1)2 −y2]=x[(x-1)2 -y2]
=x(x−1−y)(x−1+y)=x(x-1-y)(x-1+y)
c, x3−4x2−12x+27x3-4x2-12x+27
=(x3+27)−(4x2+12x)=(x3+27)-(4x2+12x)
=(x+3)(x2−3x+9)−4x(x+3)=(x+3)(x2-3x+9)-4x(x+3)
=(x+3)(x2−3x+9−4x)=(x+3)(x2-3x+9-4x)
=(x+3)(x2−7x+9)