`a, 99^3 + 3 . 99^2 + 3 . 99 + 1`
`= 99^3 + 3 . 99^2 . 1 + 3 . 99 . 1^2 + 1^3`
`= (99 + 1)^3`
`= 100^3`
`= 1000000`
a: \(99^3+3\cdot99^2+3\cdot99+1\)
\(=99^3+3\cdot99^2\cdot1+3\cdot99\cdot1^2+1^3\)
\(=\left(99+1\right)^3=100^3=1000000\)
b: \(x^4-2x^2y-x^2+y^2+y\)
\(=x^4-2x^2y+y^2-\left(x^2-y\right)\)
\(=\left(x^2-y\right)^2-\left(x^2-y\right)\)
\(=6^2-6=36-6=30\)
`b,` Ta có:
`x^2- y = 6`
`=> y = x^2 - 6`
Thay `y = x^2 - 6,` ta có:
`x^4 - 2x^2(x^2 - 6) - x^2 + (x^2 - 6)^2 + (x^2 - 6)`
`= x^4 - 2x^4 + 12x^2 - x^2 + (x^4 - 12x^2 + 36) + x^2 - 6`
`= x^4 - 2x^4 + 12x^2 - x^2 + x^4 - 12x^2 + 36 + x^2 - 6`
`= (x^4 - 2x^4 + x^4) + (12x^2 - x^2 - 12x^2 + x^2) + 36 - 6`
`= 30`