a) Xét △ABD và △DBH có
DB : cạnh chung
góc ABD = góc DBH ( gt )
⇒ △ABD = △DBH ( ch - gn )
⇒ AD = HD ( 2 cạnh tương ứng )
b) △HDC có : DH < DC ( vì trong △ vuông , cạnh huyền lớn nhất )
mà DH = AD ⇒ AD < DC
a) Xét △ABD và △DBH có
DB : cạnh chung
góc ABD = góc DBH ( gt )
⇒ △ABD = △DBH ( ch - gn )
⇒ AD = HD ( 2 cạnh tương ứng )
b) △HDC có : DH < DC ( vì trong △ vuông , cạnh huyền lớn nhất )
mà DH = AD ⇒ AD < DC
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Bài 1: Cho tam giác ABC vuông tại A, phan giác BD(D thuộc AC). Từ D kẻ DH vuông góc với BC(H thuộc BC) (Vẽ hình và viết giả thuyết, kết hộ mình nữa ạ!)
a,Chứng mình hai tam giác ABD và DBH bằng nhau
b,Chứng minh AD<DC
c,Trên tia đối của AB lấy kiểm K sao cho KA=HC. Chứng mình tam giác DKC cân
Câu 1: Cho tam giác ABC có góc A= 90 độ. kẻ AH vuông góc với BC (H e BC) Trên đường vuông góc với BC tại điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH=BD chứng minh a) tam giác AHB=DBH b) hai đường thẳng AB và DH có song song không? vì sao?
Câu 2: Cho góc nhọn xOy. Trên tia Ox lấy điểm A, lấy điểm B trên tia Oy sao cho OA=OB. Trên tia Ax lấy điểm C, trên tia By lấy điểm D sao cho AC=BD chứng minh AD=BC. gọi E là giao điểm AD và BC, chứng minh tam giác EAD=EBD.
Câu 3: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. Chứng minh BA=BE
Câu 4: Cho tam giác ABC vuông tại A, kẻ phân giác BD (D e AC), kẻ DE vuông góc với BC tại E. gọi F là giao điểm của tia BA và ED. chứng minh tam giác BDA=BDE và DC=DF
Giúp mình giải lun nhé. Giúp mình đi mình Tick cho!!!
1.Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm
a) Chứng tỏ tam giác ABC vuông tại A.
b) Trên tia đối của tia AC lấy điểm D sao cho CD=6cm.Tính độ dài đoạn thẳng BD.
2.Cho tam giác ABC, biết AB = 12cm,AC = 9cm,BC = 15cm.
a) Chứng tỏ tam giác ABC vuông.
b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2cm.Tính độ dài đoạn thẳng BH và HC.
3.Cho tam giác nhọn ABC(AB<AC). Kẻ AH vuông góc với BC tại H. Tính chu vi tam giác ABC biết AC = 20cm, AH = 12cm, BH = 5cm.
4.Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a) Chứng minh tam giác AHB = tam giác AHC
b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho BM = CN. Chứng minh HN vuông góc AC.
5.Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I
a) Chứng minh tam giác AIB = tam giác AIC
b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng minh AD song song BC và AI vuông góc AD.
c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK.
6.Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD(E thuộc BD). AE cắt BC ở K.
a) Chứng minh tam giác ABE = tam giác KBE và suy ra tam giác BAK cân.
b) Chứng minh tam giác ABD = tam giác KBD và DK vuông góc BC.
c) Kẻ AH vuông góc BC(H thuộc BC). Chứng minh AK là tia phân giác của HAC.
Mọi người vẽ hình lun 6 bài giúp mình nha! Mình đang cần gấp!:(
Cho tam giác ABC vuông tại A, đường phân giác BD (D∈AC). Từ D kẻ DH vuông góc với BC.
a) Chứng minh ΔABD = ΔHBD.
b) So sánh AD và DC.
c) Gọi K là giao điểm của đường thẳng AB và DH, I là trung điểm của KC. Chứng minh 3 điểm B, D, I thẳng hàng
Cho tam giác ABC vuông tại A, đường phân giác BD (D∈AC). Từ D kẻ DH vuông góc với BC.
a) Chứng minh ΔABD = ΔHBD.
b) So sánh AD và DC.
c) Gọi K là giao điểm của đường thẳng AB và DH, I là trung điểm của KC. Chứng minh 3 điểm B, D, I thẳng hàng.
Bài 3. Cho tam giác ABC cân tại A . Kẻ BD vuông góc với AC tại D và CE vuông góc với AB tại E.
a) Chứng minh ABD = ACE.
b) Trên tia đối của tia DB lấy điểm K sao cho BD = DK. Chứng minh: BCK là tam giác cân.
c) Chứng minh: ED // BC từ đó suy ra
d) Tìm điều kiện của ABC để BCK là tam giác đều.
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
d) Chứng minh Dn vuông góc DH
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH
d) Chứng minh Dn vuông góc DH