Gọi I là trung điểm AB \(\Rightarrow\dfrac{IM}{SI}=\dfrac{1}{3}\) theo t/c trọng tâm
Trong tam giác SAB, từ M kẻ đường thẳng song song SA cắt AB tại H
\(\Rightarrow MH\perp\left(ABC\right)\Rightarrow NH\) là hình chiếu vuông góc của MN lên (ABC)
\(\Rightarrow\widehat{MNH}\) là góc giữa MN và (ABC)
Talet: \(\dfrac{MH}{SA}=\dfrac{IH}{IA}=\dfrac{IM}{SI}=\dfrac{1}{3}\Rightarrow\left\{{}\begin{matrix}MH=\dfrac{2a}{3}\\IH=\dfrac{2a}{9}\end{matrix}\right.\)
\(IC=\sqrt{IB^2+BC^2}=\dfrac{a\sqrt{21}}{2}\) \(\Rightarrow IN=\dfrac{1}{3}IC=\dfrac{a\sqrt{21}}{6}\)
\(cos\widehat{BIC}=\dfrac{IB}{IC}=\dfrac{\sqrt{21}}{7}\Rightarrow cos\widehat{AIC}=-\dfrac{\sqrt{21}}{7}\)
\(NH=\sqrt{IN^2+IH^2-2IN.IH.cos\widehat{AIC}}=\dfrac{a\sqrt{277}}{18}\)
\(\Rightarrow tan\widehat{MNH}=\dfrac{MH}{NH}\approx0,721\Rightarrow\widehat{MNH}\approx36^0\)
Không đáp án nào đúng?