Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ZURI

 

Câu 1: (5 điểm) Hai bến sông A và B cách nhau 56km. Một xuồng máy dự định đi xuôi dòng từ A đến B rồi trở về A với thời gian 4,8 giờ. Biết vận tốc của dòng nước là 4km/h và vận tốc của xuồng so với nước luôn không đổi. Xem như đoạn sông AB thẳng, xuồng luôn nằm trên đường thẳng AB. a) Tính vận tốc của xuồng so với nước. b) Thực tế, lúc quay trở về khi chỉ còn cách A đúng 12km thì xuồng bị hỏng máy trôi theo nước. Biết thời gian sửa máy là 15 phút và sau khi sửa xong thì xuồng máy đi tiếp với vận tốc cũ. Tính thời gian đi và về của xuồng máy trong trường hợp này.
Đăng Khoa
16 tháng 11 2023 lúc 21:59

a) gọi \(v_x\) là vận tốc của xuồng

 Ta có: \(t_1=\dfrac{56}{v_x+4}\)

           \(t_2=\dfrac{56}{v_x-4}\)

mà: \(t=t_1+t_2\)\(\Rightarrow\) \(4,8=\dfrac{56}{v_x+4}+\dfrac{56}{v_x-4}\) \(\Rightarrow\) \(v_x=24\left(\dfrac{km}{h}\right)\)

b) 

Thời gian xuồng đi là: \(t_1=\dfrac{56}{24+4}=2\left(h\right)\) 

Thời gian sửa máy là: \(t_0=15P=0,25h\)

Quãng đường xuồng trôi được khi sửa máy là:

\(S_1=t_0.v_n=0,25.4=1\left(\dfrac{km}{h}\right)\)

Vậy thời gian đi hết quãng đường xuồng bị trôi là: \(t_3=\dfrac{S_1}{v_x-v_n}=\dfrac{1}{24-4}=0,05\left(h\right)\)

Thời gian thuyền đi về với TH bình thường:

\(t_2\)\(=\dfrac{S}{v_x-v_n}=\dfrac{56}{24-4}=2,8\left(h\right)\)

\(\Rightarrow\)\(t_4=t_2+t_3+t_0=2,8+0,05+0,25+3,1\left(h\right)\)

Thời gian đi và về: \(t=t_4+t_1=3,1=2=5,1\left(h\right)\)


Các câu hỏi tương tự
Ann._.0904
Xem chi tiết
Tử-Thần /
Xem chi tiết
Vũ Minh Đức
Xem chi tiết
Ngân
Xem chi tiết
lê văn thiện
Xem chi tiết
ngoc
Xem chi tiết
Tử-Thần /
Xem chi tiết
Hoàng Bảo Lâm
Xem chi tiết
Thuận Phạm
Xem chi tiết