Đáp án A.
Chiều cao của khối trụ h = 3 a ; bán kính đáy r = 3 a 2
Do đó S t p = 2 π r 2 + 2 π r h = 27 2 π a 2 .
Đáp án A.
Chiều cao của khối trụ h = 3 a ; bán kính đáy r = 3 a 2
Do đó S t p = 2 π r 2 + 2 π r h = 27 2 π a 2 .
Cắt một khối trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng a. Tính diện tích xung quanh S của khối trụ đó.
A. S = 2 π a 2
B. S = π a 2 2
C. S = π a 2
D. S = 4 π a 2
Cho hình trụ có diện tích toàn phần là 4 π và có thiết diện cắt bởi mặt phẳng qua trục là hình vuông. Thể tích khối trụ đã cho bằng
A. 4 π 6 9
B. π 6 12
C. π 6 9
D. 4 π 9
Một hình trụ bị cắt bởi một mặt phẳng đi qua trục của nó cho ta thiết diện là một hình vuông cạnh bằng 3a. Tính diện tích toàn phần của khối trụ đó.
A. 3 π a 2
B. 27 π a 2 2
C. 3 π a 2 2
D. 13 π a 2 6
Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3.a Tính diện tích toàn phần của hình trụ đã cho
A.
B.
C.
D.
Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3a. Tính diện tích toàn phần của hình trụ đã cho
A. 9 a 2 π
B. 9 πa 2 2
C. 13 πa 2 6
D. 27 πa 2 2
Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3a. Tính diện tích toàn phần của hình trụ đã cho.
A. 9 a 2 π .
B. 9 π a 2 2 .
C. 13 π a 2 6 .
D. 27 π a 2 2 .
Xét hình trụ T có thiết diện qua trục của hình trụ là hình vuông có cạnh bằng a. Tính diện tích toàn phần S của hình trụ
A. S = 4 πa 2
B. S = 3 πa 2 2
C. S = πa 2 2
D. πa 2
khi cắt khối trụ (T) bởi mặt phẳng song song với trục và cách trục của trụ (T) một khoảng bằng a 3 ta được thiết diện là hình vuông có diện tích bằng 4 a 2 Tính thể tích V của khối trụ (T).
A. V = 7 7 π a 3
B. V = 7 7 π a 3 3
C. V = 8 3 π a 3
D. V = 8 π a 3
Cho hình trụ có diện tích xung quanh bằng 4 π , thiết diện qua trục là hình vuông. Tính thể tích V của khối trụ giới hạn bởi hình trụ
A. V = 2 π
B. V = 6 π
C. V = 3 π
D. V = 5 π