Cho hình trụ (T) có thiết diện qua trục là hình vuông có cạnh bằng a. Tính diện tích toàn phần S t p của hình trụ.
A. S t p = 3 π a 2 2
B. S t p = π a 2
C. S t p = 4 π a 2
D. S t p = π a 2 2
Cho mặt cầu (S) có bán kính R = a 3 . Gọi (T) là hình trụ có hai đường tròn đáy nằm trên (S) và diện tích thiết diện qua trục của hình trụ (T) là lớn nhất. Tính diện tích toàn phần S t p của (T).
A. S t p = 9 π a 2 .
B. S t p = 9 π a 2 3 .
C. S t p = 6 π a 2 3 .
D. S t p = 6 π a 2
Cắt một khối trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng a. Tính diện tích xung quanh S của khối trụ đó.
A. S = 2 π a 2
B. S = π a 2 2
C. S = π a 2
D. S = 4 π a 2
Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3.a Tính diện tích toàn phần của hình trụ đã cho
A.
B.
C.
D.
Cho hình trụ có thiết diện qua trục là hình vuông cạnh bằng 4 cm. Diện tích toàn phần S t p của trụ là
A. S t p = 12 π c m 2 .
B. S t p = 24 π c m 2 .
C. S t p = 16 π c m 2 .
D. S t p = 32 π c m 2 .
Cho hình trụ có thiết diện qua trục là hình vuông cạnh 2a. Mặt phẳng (P) song song với trục và cách trục một khoảng a/2. Tính diện tích thiết diện của hình trụ cắt bởi (P)
A. 2 3 a 2
B. a 2
C. 4 a 2
D. π a 2
Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3a. Tính diện tích toàn phần của hình trụ đã cho
A. 9 a 2 π
B. 9 πa 2 2
C. 13 πa 2 6
D. 27 πa 2 2
Cắt một hình trụ bởi một mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng 3a. Tính diện tích toàn phần của hình trụ đã cho.
A. 9 a 2 π .
B. 9 π a 2 2 .
C. 13 π a 2 6 .
D. 27 π a 2 2 .
Cho hình vuông ABCD có cạnh bằng a. Gọi M, N lần lượt là trung điểm của AB và CD. Khi quay hình vuông ABCD quanh MN thành một hình trụ. Gọi (S) là mặt cầu có diện tích bằng diện tích toàn phần của hình trụ, ta có bán kính của mặt cầu (S) là:
A. a 6 3
B. a 6 2
C. a 6 4
D. a 6