\(1,A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}-\dfrac{10\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}-\dfrac{5\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\\ =\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\\ =\dfrac{x-10\sqrt{x}+25}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\\ =\dfrac{\left(\sqrt{x}-5\right)^2}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\\ =\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
\(2,A=\dfrac{\sqrt{9}-5}{\sqrt{9}+5}=\dfrac{3-5}{3+5}=\dfrac{-2}{8}=-\dfrac{1}{4}\)