4.
a, b em tự giải
c.
Xét hai tam giác AEH và CFH có:
\(\left\{{}\begin{matrix}\widehat{AHE}=\widehat{CHF}\left(\text{cùng phụ }\widehat{AHF}\right)\\\widehat{EAH}=\widehat{FCH}\left(\text{cùng phụ }\widehat{ABC}\right)\end{matrix}\right.\) \(\Rightarrow\Delta AEH\sim\Delta CFH\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{CF}=\dfrac{AH}{CH}\Rightarrow AE.CH=AH.CF\)
d. Do \(\Delta AEH\sim\Delta CFH\Rightarrow\dfrac{EH}{FH}=\dfrac{AH}{CH}\Rightarrow\dfrac{EH}{AH}=\dfrac{FH}{CH}\)
\(\Rightarrow FH=\dfrac{EH.CH}{AH}\)
\(\Rightarrow S_{EHF}=\dfrac{1}{2}EH.FH=\dfrac{EH^2.CH}{2AH}\)
Mà H cố định \(\Rightarrow\dfrac{CH}{2AH}\) cố định \(\Rightarrow S_{EHF-min}\) khi \(EH_{min}\)
\(\Rightarrow E\) là hình chiếu vuông góc của H lên AB
5.
Với mọi x;y;z ta có:
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2\ge\dfrac{1}{3}\left(x+y+z\right)^2\)
Áp dụng:
Đặt vế trái BĐT cần chứng minh là P, ta có:
\(P=\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2+\left(c+\dfrac{1}{c}\right)^2\)
\(P\ge\dfrac{1}{3}\left(a+\dfrac{1}{a}+b+\dfrac{1}{b}+c+\dfrac{1}{c}\right)^2\)
\(P\ge\dfrac{1}{3}\left(a+b+c+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\ge\dfrac{1}{3}\left(a+b+c+\dfrac{9}{a+b+c}\right)^2\)
\(P\ge\dfrac{1}{3}\left(1+\dfrac{9}{1}\right)^2=\dfrac{100}{3}>33\)