\(-\dfrac{8}{2\sqrt{2}}=\dfrac{-2\sqrt{2}\cdot2\sqrt{2}}{2\sqrt{2}}=-2\sqrt{2}\)
\(-\dfrac{8}{2\sqrt{2}}=\dfrac{-2\sqrt{2}\cdot2\sqrt{2}}{2\sqrt{2}}=-2\sqrt{2}\)
rút gọn các biểu thức sau: (giả thiết các biểu thức chữ đều có nghĩa)
a) \(\dfrac{2+\sqrt{2}}{1+\sqrt{2}}\)
b) \(\dfrac{\sqrt{15}-\sqrt{5}}{1-\sqrt{3}}\)
c) \(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}\)
Tìm giá trị biểu thức \(A=x^2+\sqrt{x^4+x+1}\) với \(x=\dfrac{1}{2}\sqrt{\sqrt{2}+\dfrac{1}{8}}-\dfrac{1}{8}.\sqrt{2}\)
cho biểu thức
\(B=\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-244}{x-9}\)
a) chứng minh rằng B=\(\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b) Tìm giá trị của x để biểu thức \(\dfrac{\sqrt{x-1}}{\sqrt{x}+2}=0\)
Cho 2 biểu thức A= \(\dfrac{7}{\sqrt{x}+8}\) và B=\(\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{2\sqrt{x}-24}{x-9}\)
a) Chứng minh B= \(\dfrac{\sqrt{x}+8}{\sqrt{x}+3}\)
b) Tìm GTLN của B
c) Tìm số nguyên x để biểu thức P = A.B có giá trị là số nguyên.
Thực hiện phép tính ( rút gọn biểu thức )
a) \(\dfrac{\sqrt{2}}{2\sqrt{2}-3}\)+\(\dfrac{1}{3+2\sqrt{2}}\) b) \(\dfrac{1}{\sqrt{10}+\sqrt{6}}\)+\(\dfrac{1}{\sqrt{6}-\sqrt{10}}\)
c) \(\dfrac{-2}{3\sqrt{8}}\)+\(\dfrac{1}{3-2\sqrt{2}}\)
Rút gọn các biểu thức sau:
a. \(\dfrac{8}{\left(\sqrt{5}+\sqrt{3}\right)^2}\) - \(\dfrac{8}{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
b.\(\dfrac{1}{4-3\sqrt{2}}\) - \(\dfrac{1}{4+3\sqrt{2}}\)
c.\(\left(\dfrac{\sqrt{7}+3}{\sqrt{7}-3}-\dfrac{\sqrt{7}-3}{\sqrt{7}+3}\right)\): \(\sqrt{28}\)
d.\(\dfrac{3}{\sqrt{6}-\sqrt{3}}\)+\(\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
Bài 1:Rút gọ các biểu thức sau
a)16\(\sqrt{\dfrac{1}{2}}-3\sqrt{8}-2\left(\sqrt{2}-1\right)^2\)
b)\(\dfrac{1}{2-\sqrt{3}}+\dfrac{\sqrt{2}^2+\sqrt{2}}{1+\sqrt{2}}-\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}\)
c)\(\sqrt[3]{-27}+\sqrt{2}.\sqrt{8}\)
d)\(\dfrac{\sin25^0}{\cos65^0}+sin^235^0-\left(2023-\cos^235^0\right)\)
giá trị biểu thức\(\dfrac{1}{2+\sqrt{3}}\)+\(\dfrac{1}{2-\sqrt{3}}\)bằng
Tính giá trị biểu thức :
a,\(\sqrt{8}\)- \(\dfrac{2}{\sqrt{2}}\)