Đáp án C.
Vì
I = ∫ f 5 x − 3 d x = 1 5 ∫ f 5 x − 3 d 5 x − 3 = 1 5 F 5 x − 3 + C
nên chọn phương án C.
(cần lưu ý trong công thức ∫ f x d x = F x + C thì x trong f x , dx và F(x) phải là như nhau).
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Đáp án C.
Vì
I = ∫ f 5 x − 3 d x = 1 5 ∫ f 5 x − 3 d 5 x − 3 = 1 5 F 5 x − 3 + C
nên chọn phương án C.
(cần lưu ý trong công thức ∫ f x d x = F x + C thì x trong f x , dx và F(x) phải là như nhau).
Cho F(x) là một nguyên hàm của hàm số f(x) trên đoạn [1;3], F(1)=3,F(3)=5 và ∫ 1 3 ( x 4 - 8 x ) f ( x ) dx = 12 . Tính I = ∫ 1 3 ( x 3 - 2 ) F ( x ) dx .
A. I= 147 2
B. I= 147 3
C. I= - 147 2
D. I= 147.
nếu 0<a<b<c<d<e<f
(a-b)(c-d)(e-f).x=(b-a)(d-c)(f-e) thì x=...
Cho hàm số f(x) có đạo hàm trên đoạn [2;5], f(2)=9 và f(5)=3. Tính I = ∫ 2 5 f ' ( x ) d x
A. I=6
B. I=12
C. I=-6
D. I=-12
Biết F(x) là nguyên hàm của f(x) trên R thỏa mãn ∫ 1 e F ( x ) d ( ln x ) = 3 và F(e)=5. Tính ∫ 1 e ln x . f ( x ) d x
A. I=3
B. I=-3
C. I=2
D. I=-2
Cho hàm số y = f(x) liên tục trên R và thỏa mãn f ( 4 - x ) = f ( x ) . Biết ∫ 1 3 x f ( x ) d x = 5 .Tính I = ∫ 1 3 f ( x ) d x
A. I = 5 2
B. I = 7 2
C. I = 9 2
D. I = 11 2
Cho hàm số y=f(x) liên tục trên ℝ và thỏa mãn f(4-x)=f(x) . Biết ∫ 1 3 x f x d x = 5 . Tính I = ∫ 1 3 f x d x
A. I = 5 2
B. I = 7 2
C. I = 9 2
D. I = 11 2
Cho hàm số f ( x ) = a x + b c x + d với a,b,c,d là các số thực và c ≠ 0. Biết f(1)=1, f(2)=2 và f(f(x))=x với mọi x ≠ - d c . Tính l i m x → ∞ f ( x ) .
A. 3 2
B. 5 6
C. 2 3
D. 6 5
Cho hàm số f ( x ) = a ( x + 1 ) 3 + b x e x , biết f'(0)=-22 và ∫ 0 1 f ( x ) d x = 5 .
Tính S=a+b
A. S=10
B. S=11
C. S=6
D. S=17
Cho các số thực a, b khác 0. Xét hàm số f ( x ) = a ( x + 1 ) 3 + b x e x với mọi x khác -1. Biết f'(0)=-22 và ∫ 0 1 f ( x ) d x = 5 . Tính a 2 + b 2 .
A. 42
B. 72
C. 68
D. 10
Biết F (x) là một nguyên hàm của hàm số f ( x ) = 10 x 3 - 7 x + 2 2 x - 1 thỏa mãn F(1) = 5. Giả sử rằng F(3) = a + b 5 , trong đó a , b là các số nguyên. Tính tổng bình phương của a và b.
A. 121
B. 73
C. 265
D. 361