Chọn: D
Cách giải:
Xét phương trình hoành độ giao điểm
Chọn: D
Cách giải:
Xét phương trình hoành độ giao điểm
Biết rằng đồ thị hàm số y = x 3 - 3 x 2 + 2 x - 1 cắt đồ thị hàm số y = x 2 - 3 x + 1 tại hai điểm phân biệt A và B. Độ dài đoạn thẳng AB là:
A. A B = 3
B. A B = 2 2
C. A B = 1
D. A B = 2
Biết rằng đồ thị hàm số y = x 3 - 4 x 2 + 5 x - 1 cắt đồ thị hàm số y=1 tại hai điểm phân biệt A và B. Tính độ dài đoạn bằng AB.
A. AB=2
B. AB=3
C. AB= 2 2
D. AB=1
Biết rằng đồ thị (C) của hàm số y = 2 x + 1 x + 2 luôn cắt đường thẳng d:y=-x+m tại hai điểm phân biệt A và B. Tìm các giá trị thực của tham số m sao cho độ dài đoạn thẳng AB ngắn nhất
A.
B.
C.
D.
Biết rằng đồ thị hàm số y = x + 3 x - 1 và đường thẳng y = x – 2 cắt nhau tại hai điểm phân biệt A(xA;yA) và B(xB;yB). Tính yA + yB.
A. yA + yB = -2
B. yA + yB = 2
C. yA + yB = 4
D. yA + yB = 0
Đường thẳng d:y=x-3 cắt đồ thị (C) của hàm số y = x + 1 x - 2 tại hai điểm phân biệt A và B phân biệt. Gọi d1, d2 lần lượt là khoảng cách từ A và B đến đường thẳng △ : x - y = 0 Tính d=d1+d
A.
B.
C. d = 6
D.
Có hai điểm A, B phân biệt thuộc đồ thị hàm số (C): y = x + 2 x - 1 sao cho A và B đối xứng với nhau qua điểm M(3;3). Tính độ dài đoạn thẳng AB.
A.
B.
C.
D.
Đồ thị hàm số y = 4 x - 1 x + 4 cắt đường thẳng y = -x + 4 tại hai điểm phân biệt A, B. Tọa độ điểm C là trung điểm của đoạn thẳng AB là
Cho (C) là đồ thị của hàm số y=(x-2)/(x+1) và đường thẳng d:y=mx+1. Tìm các giá trị thực của tham số m để đường thẳng d cắt đồ thị hàm số (C) tại hai điểm A,B phân biệt thuộc hai nhánh khác nhau của (C)
A.
B.
C.
D.
Đồ thị (C) của hàm số cắt đường thẳng Δ: y = -x tại hai điểm phân biệt A và B. Tìm tọa độ trung điểm I của đoạn thẳng AB
A. I(-1;1).
B. I(-2;2).
C. I(3;-3).
D. I(6;-6).