Lời giải:
Nếu .... là vô hạn thì:
$M=\sqrt{15-2M}$
$\Rightarrow M^2=15-2M$
$\Leftrightarrow M^2+2M-15=0$
$\Leftrightarrow (M-3)(M+5)=0$
$\Leftrightarrow M=3$ (do $M>0$)
Lời giải:
Nếu .... là vô hạn thì:
$M=\sqrt{15-2M}$
$\Rightarrow M^2=15-2M$
$\Leftrightarrow M^2+2M-15=0$
$\Leftrightarrow (M-3)(M+5)=0$
$\Leftrightarrow M=3$ (do $M>0$)
cho \(\sqrt{25-x^2}-\sqrt{15-x^2}=2\)tjnh \(\sqrt{25-x^2}+\sqrt{15-x^2}=?\)
1,826-y/\(1,826-\frac{y^2}{\sqrt{12,04}}:\sqrt{18}\cdot\left(\sqrt{15}-\frac{2,3+\frac{5}{3\sqrt{5}}\cdot7}{0,0598\sqrt{15}+\sqrt[3]{6}}\right)=\frac{7}{4}\)
Rút gọn
\(\frac{\sqrt{160}-\sqrt{80}}{\sqrt{8}-\sqrt{2}}-\frac{\sqrt{40}-\sqrt{15}}{2\sqrt{2}-\sqrt{3}}\)
Tính P = \(\frac{4+\sqrt{3}}{\sqrt{1}+\sqrt{3}}+\frac{8+\sqrt{15}}{\sqrt{3}+\sqrt{5}}+...+\frac{2n+\sqrt{n^2-1}}{\sqrt{n-1}+\sqrt{n+1}}+...+\frac{240+\sqrt{14399}}{\sqrt{119}+\sqrt{121}}\)
rút gọn
C=\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)
\(A=\sqrt{15}+\sqrt{60}+\sqrt{140}+\sqrt{84}\)
tính giá trị biểu thức A
cho biểu thức A=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}-3}\)
rút gọn A và tìm giá trị lớn nhất của A
\(\sqrt{15-x}-\sqrt{x-2}=1\)
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)