Kí hiệu F (x) là một nguyên hàm của hàm số f ( x ) = 1 e x + 1 , biết F 0 = - ln 2 . Tìm tập nghiệm S của phương trình F ( x ) + ln ( e x + 1 ) = 3 .
A. S = - 3 ; 3
B. S = 3
C. S = ∅
D. S = - 3
Cho F(x) là một nguyên hàm của hàm số 1 e x + 1 , thỏa mãn F ( 0 ) = - ln 2 . Tìm tập nghiệm S của phương trình F ( x ) + l n ( e x + 1 ) = 3
A. S = 3
B. S = - 3
C. S = ∅
D. S = ± 3
Họ nguyên hàm F(x) của hàm số f ( x ) = 2 − ln 2 ( 2 x + 1 ) 2 x + 1 là
A. F ( x ) = ln 2 x + 1 − ln 3 2 x + 1 6 + C
B. F ( x ) = − 2 + 2 ln 2 x + 1 2 x + 1 2 + C
C. F ( x ) = 2 ln ( 2 x + 1 ) − ln 3 2 x + 1 3 + C
D. F ( x ) = 2 ( 2 x + 1 ) − ln 3 2 x + 1 + C
Biết F(x) là một nguyên hàm của hàm số f(x)= e 2 x và F(0)=3/2. Tính F(1/2)
A. F(1/2)=1/2 e+2
B. F(1/2)=1/2 e+1
C. F(1/2)=1/2 e+1/2
D. F(1/2)=2e+1
Cho F(x) là một nguyên hàm của hàm số f x = 1 + x − 1 − x trên tập và thỏa mãn F 1 = 3 ; F - 1 = 2 ; F - 2 = 4 ; Tính tổng T = F 0 + F 2 + F − 3 .
A. 8
B. 12
C. 14
D. 10
Cho hàm số f (x) xác định trên ( - ∞ ; - 1 ) ∪ ( 0 ; + ∞ ) và f ' ( x ) = 1 x 2 + x , f ( 1 ) = ln 1 2 . Biết ∫ 1 2 ( x 2 + 1 ) f ( x ) d x = a ln 3 + b ln 2 + c với a,b,c là các số hữu tỉ. Giá trị biểu thức a+b+c bằng
A. 27 2
B. 1 6
C. 7 6
D. - 3 2
Biết F(x) là một nguyên hàm của hàm số f x = 1 x - 1 và F(2) = 1 Tính F(3)
A. F 3 = ln 2 - 1 .
B. F 3 = ln 2 + 1 .
C. F 3 = 1 2 .
D. F 3 = 7 4 .
Cho hàm số f(x) liên tục và có đạo hàm trên R và f ' ( x ) = e - f ( x ) ( 2 x + 3 ) ; f ( 0 ) = ln 2 . Tính ∫ 1 2 f ( x ) dx ?
A. 6ln2 + 2.
B. 6ln2 – 2.
C. 6ln2 – 3.
D. 6ln2 + 3.
Cho F(x) là một nguyên hàm của hàm số f(x) trên đoạn [1;3], F(1)=3,F(3)=5 và ∫ 1 3 ( x 4 - 8 x ) f ( x ) dx = 12 . Tính I = ∫ 1 3 ( x 3 - 2 ) F ( x ) dx .
A. I= 147 2
B. I= 147 3
C. I= - 147 2
D. I= 147.
Biết F (x) là một nguyên hàm của hàm số f ( x ) = 10 x 3 - 7 x + 2 2 x - 1 thỏa mãn F(1) = 5. Giả sử rằng F(3) = a + b 5 , trong đó a , b là các số nguyên. Tính tổng bình phương của a và b.
A. 121
B. 73
C. 265
D. 361