Đáp án B
Ta có
∫ 0 4 3 x − 3 d x = 1 3 ∫ 0 4 f 3 x − 3 d 3 x − 3 = 1 3 ∫ 0 9 f x d x = 1 3 .9 = 3.
Đáp án B
Ta có
∫ 0 4 3 x − 3 d x = 1 3 ∫ 0 4 f 3 x − 3 d 3 x − 3 = 1 3 ∫ 0 9 f x d x = 1 3 .9 = 3.
Cho hàm số f(x) liên tục trên ℝ và F(x) là nguyên hàm của f(x), biết ∫ 0 9 f x d x = 9 và F(0) = 3.Tính F(9)
A. F 9 = − 6
B. F 9 = 6
C. F 9 = 12
D. F 9 = − 12
Cho hàm số y = f (x) thỏa mãn f(0) = 1, f'(x) liên tục trên R và ∫ 0 3 f ' ( x ) dx = 9 .Giá trị của f(3) là
A. 6
B. 3
C. 10
D. 9
Cho hàm số y = f(x) có đạo hàm liên tục trên ℝ thỏa mãn f ' x - x f x = 0 , f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e
B. 1 e
C. e
D. e
Cho hàm số f(x) liên tục trên ℝ và ∀ x ∈ 0 ; 2018 , ta có f ( x ) > 0 và f ( x ) . f ( 2018 − x ) = 1 . Giá trị của tích phân I = ∫ 0 2018 1 1 + f ( x ) d x là
A. 2018
B. 0
C. 1009
D. 4016
Cho hàm số y = f (x) có đạo hàm liên tục trên ℝ , với f (x) > 0 và f (0) = 1. Biết rằng f ' ( x ) + 3 x x - 2 f ( x ) = 0 , ∀ x ∈ ℝ . Tìm tất cả các giá trị thực của tham số m để phương trình f x + m = 0 có bốn nghiệm thực phân biệt.
A. 1 < m < e 4
B. - e 6 < m < - 1
C. - e 4 < m < - 1
D. 0 < m < e 4
Cho biết y=f(x) là hàm số liên tục và xác định trên R|{1;3} và thỏa mãn đồng thời các điều kiện: f ' ( x ) = 1 ( x - 1 ) ( x - 3 ) ; f ( 0 ) = 2 f ( 2 ) = 4 f ( 4 ) = 4 Khi đó giá trị của biểu thức: f ( - 1 ) + f 3 2 + f 9 2 nằm trong khoảng?
A . 5 - 1 2 ln 7 18
B . 7 - 1 2 ln 7 18
C . 2 + 1 2 ln 7 18
D . 3 + 1 2 ln 7 18
Cho hàm số R xác định và liên tục trên D thỏa mãn f(x)>3. Biết ( f ( x ) - 3 m x - 3 = m 2 x 2 - 6 m x + 9 + m f 2 ( x ) - 6 f ( x ) + 9 + m với m>0. Tính l o g m f ( m ) ?
A. 2
B. 1
C. 3
D. 4
Cho hàm số R xác định và liên tục trên D thỏa mãn f(x)>3. Biết ( f ( x ) - 3 m x - 3 = m 2 x 2 - 6 m x + 9 + m f 2 ( x ) - 6 f ( x ) + 9 + m với m>0. Tính l o g m f ( m ) ?
A. 2
B. 1
C. 3
D. 4
Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f ( x ) > 0 , ∀ ∈ ℝ . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m > e
B. 0 < m ≤ 1
C. 0 < m < e
D. 1 < m < e