Sửa đề: Cho \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\) . CMR: \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Giải:
\(\dfrac{b.z-x.y}{a}=\dfrac{c.x-a.z}{b}=\dfrac{a.y-b.x}{c}\)
\(\Rightarrow\dfrac{a\left(bz-cy\right)}{a^2}=\dfrac{b\left(cx-az\right)}{b^2}=\dfrac{c\left(ay-bz\right)}{c^2}\)
\(\Rightarrow\dfrac{abz-acy}{a^2}=\dfrac{bcx-abz}{b^2}=\dfrac{acy-bcx}{c^2}\)
\(\Rightarrow\dfrac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}\)
\(\Rightarrow\dfrac{0}{a^2+b^2+c^2}\)
\(=0\)
\(\dfrac{bz-cy}{a}=0\)
\(\Rightarrow bz-cy=0\)
\(\Rightarrow\dfrac{z}{c}=\dfrac{y}{b}\left(1\right)\)
\(\dfrac{cx-az}{b}=0\)
\(\Rightarrow cx-az=0\)
\(\Rightarrow cx=az\)
\(\Rightarrow\dfrac{x}{a}=\dfrac{z}{c}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)