Biết ∫ 1 2 ln x x 2 d x = a ln 2 + b c (với a là số hữu tỉ, b, c là các số nguyên dương và b c là phân số tối giản). Tính giá trị của S = 2 a + 3 b + c .
A. S = 4
B. S = - 6
C. S = 6
D. S = 5
∫ 4 6 x 2 + 4 x + 1 x 2 + x Biết rằng với a, b, c là các số nguyên dương, a b là phân số tối giản. Tính giá trị của biểu thức S = a + b + c
A. S = 199
B. S = 198
C. S = 395
D. S = 396
Cho ∫ 1 2 ln x ( x + 1 ) 2 d x = a b l n 2 - l n c với a,b,c là các số nguyên dương và a/b là phân số tối giản. Tính giá trị của biểu thức S = a + b c
A. S = 4 3
B. S = 8 3
C. S = 6 5
D. S = 10 3
Cho hàm số y = f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tập tất cả các giá trị của m để đồ thị hàm số y = f x có 5 điểm cực trị là a b ; c với a, b, c là các số nguyên và a b là phân số tối giản. Tính a+b+c
A. 11
B. 8
C. 10
D. 5
Biết I = ∫ 0 4 x ln 2 x + 1 d x = a b ln 3 - c , trong đó a, b, c là các số nguyên dương và a/b là phân số tối giản. Tính S=a+b+c.
A. 72.
B. 68
C. 60.
D. 17.
Biết ∫ sin 2 x - cos 2 x 2 d x = x + a b cos 4 x + C với a,b là các số nguyên dương, a b là phân số tối giản và C ∈ ℝ . Giá trị của a+b bằng
A. 5
B. 4
C. 2
D. 3
Cho biết ∫ 0 1 x 2 e x x + 2 2 d x = a b . e + c với a , c là các số nguyên , b là số nguyên dương và a b là phân số tối giản. Tính a - b + c .
A. 3
B. 0
C. 2
D. 3 -
Biết I = ∫ 0 4 x ln 2 x + 1 d x = a b ln 3 - c , trong đó a, b, c là các số nguyên dương và a b là phân số tối giản. Tính S = a + b + c.
A. S = 60
B. S = 70
C. S = 72
D. S = 68
Biết ∫ 3 4 d x ( x + 1 ) ( x - 2 ) = a ln 2 + b ln 5 + c với a, b, c là các số hữu tỉ.
Tính S = a – 3b + c
A. S = 3
B. S = 2
C. S = -2
D. S = 0