Biết rằng ∫ 2 3 x 2 - x + 1 x + x - 1 d x = a - 4 b c với a, b, c là các số nguyên dương. Tính T = a + b + c
A. 31
B. 29
C. 33
D. 27
Cho hàm số f ( x ) = a x + b c x + d với a,b,c,d là các số thực và c ≠ 0. Biết f(1)=1, f(2)=2 và f(f(x))=x với mọi x ≠ - d c . Tính l i m x → ∞ f ( x ) .
A. 3 2
B. 5 6
C. 2 3
D. 6 5
Cho hàm số f x = a x + b cx + d với a,b,c,d là các số thực và c ≠ 0 Biết f 1 = 1 , f 2 = 2 và f f x = x với mọi x ≠ - d c Tính lim x → ∞ f x
A. 3 2
B. 5 6
C. 2 3
D. 6 5
Cho ∫ 1 2 6 x x + 1 + x + 1 d x = a + b - c với a,b,c là các số nguyên dương. Giá trị biểu thức a+b+c bằng
A. 247.
B. 236.
C. 246.
D. 237.
Biết rằng ∫ 1 2 ln ( x + 1 ) d x = a ln 3 + b ln 2 + c với a, b, c là các số nguyên. Tính S = a +b + c.
A. S = 1
B. S = 0
C. S = 2
D. S = -2
Cho ∫ 0 9 16 1 x + 1 + x + 1 d x = a - b ln 2 c với a,b,c là các số nguyên dương và a/c tối giản. Giá trị của biểu thức a+b+c bằng
A. 43.
B. 48.
C. 88.
D. 33.
Cho ∫ 1 2 ln x ( x + 1 ) 2 d x = a b l n 2 - l n c với a,b,c là các số nguyên dương và a/b là phân số tối giản. Tính giá trị của biểu thức S = a + b c
A. S = 4 3
B. S = 8 3
C. S = 6 5
D. S = 10 3
∫ 4 6 x 2 + 4 x + 1 x 2 + x Biết rằng với a, b, c là các số nguyên dương, a b là phân số tối giản. Tính giá trị của biểu thức S = a + b + c
A. S = 199
B. S = 198
C. S = 395
D. S = 396
Biết ∫ 3 4 d x ( x + 1 ) ( x - 2 ) = a ln 2 + b ln 5 + c với a, b, c là các số hữu tỉ.
Tính S = a – 3b + c
A. S = 3
B. S = 2
C. S = -2
D. S = 0