Biết rằng tập nghiệm S của bất phương trình log - x 2 + 100 x - 2400 < 2 có dạng S = a ; b \ x ∘ . Giá trị của a + b - x ∘ bằng:
A. 150.
B. 100.
C. 30.
D. 50.
Cho phương trình m ln 2 x + 1 - x + 2 - m ln x + 1 - x - 2 = 0 1 . Tập tất cả giá trị của tham số m để phương trình 1 có các nghiệm, trong đó có hai nghiệm phân biệt thỏa mãn 0 < x 1 < 2 < 4 < x 2 là khoảng a ; + ∞ . Khi đó, a thuộc khoảng
A. (3,8;3,9)
B. (3,7;3,8)
C. (3,6;3,7)
D. (3,5;3,6)
Cho phương trình 4 - x - a . log 3 x 2 - 2 x + 3 + 2 - x 2 + 2 x . log 1 3 2 x - a + 2 = 0 . Tập tất cả các giá trị của tham số a để phương trình có 4 nghiệm x 1 ; x 2 ; x 3 ; x 4 thỏa mãn là (c;d). Khi đó giá trị biểu thức T = 2 c + 2 d bằng:
A. 5
B. 2
C. 3
D. 4
Tập giá trị của m thỏa mãn bất phương trình 2 . 9 x - 3 . 6 x 6 x - 4 x ≤ 2 ( x ∈ R ) là ( - ∞ ; a ) ∪ ( b ; c ) . Khi đó a+b+c bằng:
A. 3
B. 1
C. 2
D. 0
Tập giá trị của m thỏa mãn bất phương trình 2 . 9 x - 3 . 6 x 6 x - 4 x ≤ 2 x ∈ ℕ là - ∞ ; a ∪ b ; c . Khi đó a + b + c bằng:
A. 3
B. 1
C. 2
D. 0
Cho phương trình 4 x 2 − 2 x 2 + 2 + 6 = m . Biết tập tất cả giá trị m để phương trình có đúng 4 nghiệm phân biệt là khoảng a ; b . Khi đó b - a bằng:
A. 4
B. 1
C. 5
D. 3
Biết rằng phương trình 2 − x + 2 + x − 4 − x 2 = m có nghiệm khi m thuộc [a;b] với a , b ∈ ℝ . Khi đó giá trị của biểu thức T = a + 2 2 + b là
A. T = 3 2 + 2
B. T = 6
C. T = 8
D. T = 0
S là tập hợp tất cả các giá trị thực của tham số a thỏa mãn mỗi nghiệm của bất phương trình log x ( 5 x 2 - 8 x + 3 ) > 2 đều là nghiệm của bất phương trình x 2 - 2 x - a 4 + 1 ≥ 0 . Khi đó:
A. S = - 10 5 ; 10 5 .
B. S = - ∞ ; - 10 5 ∪ 10 5 ; + ∞
C. S = - 10 5 ; 10 5 .
D. S = - ∞ ; - 10 5 ∪ 10 5 ; + ∞ .
Tập nghiệm của bất phương trình log 2 x x 2 + 2 + 4 - x 2 + 2 x + x 2 + 2 ≤ 1 là ( - a ; - b ] . Khi đó ab bằng
A. 12 5
B. 5 12
C. 15 16
D. 16 15