\(1,A-\left(xy+x^2-y^2\right)=x^2+y^2\)
\(\Rightarrow A=x^2+y^2+\left(xy+x^2-y^2\right)\)
\(\Rightarrow A=2x^2+xy\)
\(2,\left(6x^2-3xy^2\right)+A=x^2+y^2-2xy^2\)
\(\Rightarrow A=x^2+y^2-2xy^2-\left(6x^2-3xy^2\right)\)
\(\Rightarrow A=x^2+y^2-3xy^2-6x^2+3xy^2\)
\(\Rightarrow A=-5x^2+y^2+xy^2\)
\(3,A+\left(x^2+y^2\right)=5x^2+3y^2-xy\)
\(\Rightarrow A=5x^2+3y^2-xy-\left(x^2+y^2\right)\)
\(\Rightarrow A=5x^2+3y^2-xy-x^2-y^2\)
\(\Rightarrow A=4x^2+2y^2-xy\)
\(4,A+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(\Rightarrow A=6x^2+9xy-y^2-\left(5x^2-2xy\right)\)
\(\Rightarrow A=6x^2+9xy-y^2-5x^2+2xy\)
\(\Rightarrow A=x^2-y^2+11xy\)
\(5,A+\left(3x^2y-2xy^3\right)=2x^2y-4xy^3\)
\(\Rightarrow A=2x^2y-4xy^3-\left(3x^2y-2xy^3\right)\)
\(\Rightarrow A=2x^2y-4xy^3-3x^2y+2xy^3\)
\(\Rightarrow A=-x^2y-2xy^3\)
\(6,A+\left(x^2-2y^2\right)=x^2-y^2+3y^2-1\)
\(\Rightarrow A=x^2+2y^2-1-\left(x^2-2y^2\right)\)
\(\Rightarrow A=x^2+2y^2-1-x^2+2y^2\)
\(\Rightarrow A=4y^2-1\)