a: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^3+3x^2-3x^2-9x+2x+6}{x+3}=x^2-3x+2\)
\(A=x^2-3x+2\)
\(=x^2-3x+\dfrac{9}{4}-\dfrac{1}{4}=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}>=-\dfrac{1}{4}\)
Dấu '=' xảy ra khi x=3/2
b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{3x^4-6x^2-2x^3+4x+4x^2-8}{x^2-2}\)
\(=3x^2-2x+4\)
\(=3\left(x^2-\dfrac{2}{3}x+\dfrac{4}{3}\right)\)
\(=3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{9}+\dfrac{11}{9}\right)\)
\(=3\left(x-\dfrac{1}{3}\right)^2+\dfrac{11}{3}>=\dfrac{11}{3}\)
Dấu '=' xảy ra khi x=1/3