a: Xét tứ giác MNCD có
MN//CD
Do đó: MNCD là hình thang
mà \(\widehat{D}=\widehat{C}\)
nên MNCD là hình thang cân
a: Xét tứ giác MNCD có
MN//CD
Do đó: MNCD là hình thang
mà \(\widehat{D}=\widehat{C}\)
nên MNCD là hình thang cân
Cho hình thang cân ABCD (AB//CD; AB<CD). Qua A kẻ đường thẳng song song với BC cắt CD tại M.
a) Tứ giác ABCD là hình gì ? Vì sao ?
b) Gọi I là trung điểm của AM, H là trung điểm của AC; đường thẳng IH cắt BC tại K. Chứng minh K là trung điểm của BC.
c) Chứng minh DC - AB < 4.BK
Bài 1: Tứ giác ABCD có AB=BC=CD và Góc D+B=180 độ
a, Chứng minh AC là phân giác góc A
b, Tứ giác ABCD là hình gì? tại sao?
Bài 2: Cho hình thang ABCD (AB//CD). M là trung điểm của AD sao cho CM là phân giác góc C. Biết MB=6cm, MC=8cm
a, BC=?
b, So sánh khoảng cách từ M đến BC và đường cao hình thang.
Bài 3: Cho tứ giác ABCD, AC là phân giác góc A. Gọi I,K lần lượt là trung điểm của AD,BC. IK cắt AC tại S.
a, Cmr: S là trung điểm của AC
b, Từ C kẻ Cx//AD. Cx cắt AB tại M. Tứ giác ABCD là hình gì? tại sao?
Bài 4: Cho tứ giác ABCD gọi E,F lần lượt là trung điểm của BC và AD.
Cmr:
a,EF<(AB+CD)/2
b, Tứ giác ABCD<=>EF<(AB+CD)/2
Bài 5: Cho hình thang ABCD (AB//CD), AB<CD. AC cắt BD tại O. Biết gócDOC=60 độ
AD=6cm. P,Q,R lần lượt là trung điểm của OA,OD. Tính chu vi tam giác PQR
Bài 6: Cho tam giác ABC, D thuộc AB sao cho BD=1/4 AB, E là trung điểm vủa BC. Đường thẳng DE cắt AC tại F. Cmr: CF=1/2AC.
Các bạn xem làm giúp mình với nhé mình sắp phải nộp rồi
Cho hình thang ABCD với AB song song CD, AB<CD. Gọi trung điểm của đường chéo BD là M. Qua M kẻ đường thẳng song song với DC cắt AC tại N. Gọi E là trung điểm của AB, O là giao điểm của AD và BC, OE cắt CD tại F. Chứng minh F là trung điểm của CD.
Cho hình thang ABCD (AB||CD, AB<CD). Gọi trung điểm của đường chéo BD là M. Qua M kẻ đường thẳng song song với DC cắt AC tại N. Chứng minh:
a) N là trung điểm của AC;
b) M N = C D − A B 2
1) Cho hình thang ABCD (AB//CD), I là trung điểm của BD, kéo dài về phía B, M và N theo thứ tự là trung điểm của AB, CD. Gọi E là giao điểm của AB, CD; F là giao điểm IN và BC. CM:
a) EF//AB
b)MN là phân giác góc ENF nếu ABCD là hình thang cân
2) Cho tam giác ABC, đường thẳng song song với trung tuyến AD, vẽ điểm P trên BC cắt AB và AC tại M và N. So sánh AM/AB và AN/AC. Tính tỉ số PM/AD. Cm PN+PM=2DA
Cho hình thang ABCD (AB // CD). Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF // AB
b) Đường thẳng EF cắt AD và BC lần lượt tại M và N. Chứng minh ME=EF=FN
c) Biết AB=7,5cm; CD=12cm. tính MN
Cho hình thang ABCD (AB // CD). Gọi M là trung điểm của CD, E là giao điểm của MA và BD, F là giao điểm của MB và AC.
a) Chứng minh EF // AB
b) Đường thẳng EF cắt AD và BC lần lượt tại M và N. Chứng minh ME=EF=FN
c) Biết AB=7,5cm; CD=12cm. tính MN
. Cho hình thang cân ABCD (AB//CD và AB<CD) Kẻ các đường cao AH và BK của hình thang.CM: a; DH=CK
b; Gọi M là trung điểm của AD và N là trung điểm của BC.MN lần lượt cắt BD tại E và AC tại F.Biết AB=4cm,CD=10cm,tính EF ?
Cho hình thang cân ABCD (AB song song CD), (AB<CD).Từ A kẻ AH vuông góc với AB cắt AB tại H. Từ B kẻ BK vuông góc với AB cắt AC tại K.
a) Tứ giác AHKB là hình gì? Vì sao?
b) Gọi E là trung điểm của Ab, F là trung điểm của DC, I và G theo thứ tự là giao điểm của AC với BD và CH với DK. Chứng minh rằng bốn điểm E, I, G, H thẳng hàng.
bài 1 cho hình thang ABCD (AB // CD và AB < CD ) trên đg AD lấy AE = EM = MP = PD .Trên đg BC lấy BF = FN = NQ = QC .
1) C/m M, N lần lượt là trung điểm của AD và BC.
2) tứ giác EFQP là hình gì ?
3) tính MN ,EF ,PQ biết AB = 8 cm và CD = 12 cm
4) kẻ AH vuông góc tại H và AH = 10 cm . tính \(S_{ABCD}\)
bài 2 cho tam giác ABCD . Trên cạnh AB lấy AD = DE = EB . Từ D, E kẻ các đg thẳng cùng song song với BC cắt cạnh AC lần lượt tại M, N . C/m rằng : 1) M là trung điểm của AN.
2) AM = MN = NC .
3) 2EN = DM + BC .
4)\(S_{ABC}=3S_{AMB}\)
bài 3 : cho hình thang ABCD ( AB //CD ) có đg cao AH = 3 cm và AB = 5cm , CD = 8cm gọi E, F , I lần lượt là trung điểm của AD , BC và AC.
1) C/m E ,F ,I thẳng hàng .
2) tính \(S_{ABCD}\)
3) so sánh \(S_{ADC}\) và \(2S_{ABC}\)
bài 4: cho tứ giác ABCD . gọi E, F, I lần lượt là trung điểm AD , BC và AC .1) C/m E, I , F thẳng hàng
2) tính EF≤ AB+CD / 2
3) tứ giác ABCD phải có điều kiện gì thì EF = AB+CD / 2