Gọi tam giác vuông là ΔABC vuông tại A, đường trung tuyến ứng với cạnh huyền là AM
Trên tia đối của tia MA, lấy điểm D sao cho M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm của đường chéo BC(gt)
M là trung điểm của đường chéo AD(gt)
Do đó: ABDC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
mà \(\widehat{CAB}=90^0\)(ΔABC cân tại A)
nên ABDC là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: BC=AD(hai đường chéo của hình chữ nhật ABDC)
mà \(AM=\dfrac{AD}{2}\)(M là trung điểm của AD)
nên \(AM=\dfrac{1}{2}BC\)(đpcm)
Xét hình chữ nhật ABCD
=> O là trung điểm của AC và BD => OA=OB=OC=OD
Vì ABCD là hình chữ nhật
=>\(\widehat{ABC}=90^o\)=>\(\Delta ABC\) vuông tại B
Mà O là trung điểm của AC
=> AO là đường trung tuyến cuả \(\Delta ABC\)
=> AO=BO=CO (cmt)