a: \(2^{1995}=2^{1990}\cdot2^5=2^{1990}\cdot32\)
\(5^{863}=5^{860}\cdot5^3=5^{860}\cdot125\)
*SO sánh \(2^{1990};5^{860}\)
Ta có: \(2^{10}=1024;5^5=3125\)
=>\(2^{10}\cdot3< 5^5\)
=>\(\left(2^{10}\cdot3\right)^{172}< \left(5^5\right)^{172}\)
=>\(2^{1720}\cdot3^{172}< 5^{860}\)
mà \(3^{172}=3^4\cdot\left(3^7\right)^{24}>\left(2^{11}\right)^{24}\cdot2^6=2^{270}\)
nên \(2^{1990}=2^{270}\cdot2^{1720}< 5^{860}\)
mà 32<125
nên \(2^{1995}< 5^{863}\)