a: Xét ΔCAD và ΔCED có
CA=CE
\(\widehat{ACD}=\widehat{ECD}\)
CD chung
Do đó: ΔCAD=ΔCED
Suy ra: AD=ED
a: Xét ΔCAD và ΔCED có
CA=CE
\(\widehat{ACD}=\widehat{ECD}\)
CD chung
Do đó: ΔCAD=ΔCED
Suy ra: AD=ED
bài 1/ cho tam giác ABC có góc B=C.Tia phân giác của góc B cắt AC ở D.Tia phân giác của góc C cắt AB ở E.So sánh BD và CE.
bài 2/Cho tam giác ABC vuông tại A có AB=AC. Lấy D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD=AE. Đường thẳng đi qua D vuông góc với DE cắt CA ở K. Chứng minh: AK=AC.
bài 3/cho tam giác ABC có góc A=90 độ;AB=AC.Lấy điểm D thuộc AB,điểm E thuộc AC sao cho AD=AE.Đường thẳng qua D và vuông góc với BE cắt đường CA ở K.CMR:AK=AC.
Bài 2. Cho tam giác ABC vuông tại A. Các tia phân giác của các góc A và B cắt nhau tại I. Kẻ ID vuông góc với AB,IE vuông góc với AC (D thuộc AB,E thuộc AC)
a) Chứng minh AD = AE
b) Trên cạnh BC, lấy điểm H sao cho BH = BD. Chứng minh IH vuông góc BC
c) Chứng minh CI là tia phân giác của góc ACB .
d) Chứng minh (AB+AC-BC) : 2
e) Tính độ dài các cạnh BC, ID. Biết rằng AB = 6cm, AC = 8cm.
làm hộ mình vs ạ
Cho tam giac ABC vuông tại C có góc B=40 độ. Tia phân giác AD. Lấy E thuộc AB sao cho AE=AC.
a) So sánh các cạnh của tam giác ABC.
b) Chứng tỏ tam giác AED vuông.
c) Đường vuông góc với AC tại A cắt đường thẳng DE tại H. Chứng minh tam giác ADH cân.
d) Kẻ CK vuông góc AB tại K. Lấy I thuộc AB sao cho BI=BC. Chứng minh: CI là phân giác ACK.
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân
Cho tam giác ABC có góc B= 90. Tia phân giác góc A cắt cạnh BC tại D. Trên AC lấy điểm E sao cho AE= AB. a)Chứng minh: BD= DE. b)So sánh góc EDC và góc BAC. c)Chứng minh AD vuông góc với BE.
Cho ∆ABC vuông tại A , tia phân giác của góc B cắt AC tại M . Trên cạnh BC lấy D sao cho AD = AB a, chứng minh ∆ABM=∆DBM b, chứng MD,
cTia ba cắt de tại e cmr ad song song với ce vuông góc với BC Cần gấp ạBài 2: Cho tam giác ABC vuông tại A, B= 58 , tia phân giác góc BAC cắt BC tại D.Trên tia AC lấy điểm E sao cho AE = AB.
a) So sánh AB và AC .
b) Chứng minh ABD và AED bằng nhau.
c) Chứng minh AD vuông góc với BE
Bài 2: Cho tam giác ABC vuông tại A, B= 58 , tia phân giác góc BAC cắt BC tại D.Trên tia AC lấy điểm E sao cho AE = AB.
a) So sánh AB và AC .
b) Chứng minh ABD và AED bằng nhau.
c) Chứng minh AD vuông góc với BE
Cho tam giác ABC có AB < AC . Phân giác của góc A cắt cạnh BC tại điểm D. Trên cạnh AC lấy điểm E sao cho AE = AB. Chứng minh
a) ∆ A B D = ∆ A E D .
b) DA là tia phân giác của góc BDE. Từ đó suy ra A B C ^ > A C B ^ .