4:
a: A=|x-7/4|+8/5
|x-7/4|>=0
=>|x-7/4|+8/5>=8/5
Dấu = xảy ra khi x=7/4
b: B=|x-5|+|x+3/4|
=>B=|x+3/4|+|5-x|>=|x+3/4+5-x|=23/4
Dấu = xảy ra khi (x-5)(x+3/4)<=0
=>-3/4<=x<=5
a)\(A=\left|x-\dfrac{7}{4}\right|+1\dfrac{3}{5}\)
\(A=\left|x-\dfrac{7}{4}\right|+\dfrac{8}{5}\)
Mà: \(\left|x-\dfrac{7}{4}\right|\ge0\forall x\) nên
\(\Rightarrow A=\left|x-\dfrac{7}{4}\right|+\dfrac{8}{5}\ge\dfrac{8}{5}\)
Dấu "=" xảy ra:
\(\left|x-\dfrac{7}{4}\right|+\dfrac{8}{5}=\dfrac{8}{5}\)
\(\Rightarrow x=\dfrac{7}{4}\)
Vậy: \(A_{min}=\dfrac{8}{5}\) khi \(x=\dfrac{7}{4}\)
b) \(B=\left|x-5\right|+\left|x+\dfrac{3}{4}\right|\)
Mà: \(B=\left|5-x\right|+\left|x+\dfrac{3}{4}\right|\ge\left|5-x+x+\dfrac{3}{4}\right|=\dfrac{23}{4}\)
Dấu "=" xảy ra:
\(\left(5-x\right)\left(x+\dfrac{3}{4}\right)\le0\)
\(\Rightarrow\left\{{}\begin{matrix}x\le5\\x\ge-\dfrac{3}{4}\end{matrix}\right.\)
\(\Rightarrow-\dfrac{3}{4}\le x\le5\)
Vậy: \(B_{min}=\dfrac{23}{4}\) khi \(-\dfrac{3}{4}\le x\le5\)