Câu 4. (3,5 điểm) Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH và CH có độ dài lần lượt là 4cm và 9cm . Gọi M và N lần lượt là hình chiếu của H trên AB và AC. a) Chứng minh: AM .AB =AN. AC . b) Tính độ dài đoạn thẳng MN. c) Tính diện tích tứ giác BMNC.
Cho tam giác ABC vuông tại âkẻ đường cao AH sao cho BH = 9 cm CH= 16 cm a tính độ dài AH AB và CD Gọi D và E lần lượt là hình chiếu vuông góc của H Trên cạnh AB và AC cắt BD tại I Chứng minh rằng góc ADE = góc ACB .c)gọi O là trung điểm của BC , AOcắt DE tại k Chứng minh rằng AH mũ 2 =AK.BC
Câu 4. (3,5 điểm) Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH và CH có độ dài lần lượt là 4cm và 9cm . Gọi M và N lần lượt là hình chiếu của H trên AB và AC. a) Chứng minh: AM .AB= AN .AC . b) Tính độ dài đoạn thẳng MN. c) Tính diện tích tứ giác BMNC.
cho tam giác abc vuông tại a đường cao ah chia cạnh huyền BC thành hai đoạn thắng BH và BC có độ dài lần lượt là 4cm và 9cm. Gọi D,E lần lượt là hình chiếu của H trên Ab, AC.
a) Tính De
b) Tính góc B, C
c) Cm: AD.AB = AE . AC
d) Gọi M là trung điểm của BC. Cm Am vuông góc DE
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB,AC. Biết AB=4cm, AC=6cm.
a) Chứng minh : AD.AB=AE.AC
b) Tính độ dài AE
c) Kẻ phân giác AI của góc BAC. Tính độ dài HI
d) Đường thẳng vuông góc với DE tại D cắt BC tại M. Chứng minh M là trung điểm của BH
Bài 2 : Cho tam giác ABC vuông ở A. Gỉa sử D là 1 điểm trên cạnh huyền BC và E.F lần lượt là hình chiếu của D lên các cạnh AB, AC. CMR : AE.EB + AF.FC=BD.DC
Cho tam giác ABC vuông tại A, có AC > AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC
a, Chứng minh AD.AB = AE.AC và tam giác ABC đồng dạng với tam giác AED
b, Cho biết BH = 2 cm, HC = 4,5 cm:
i, Tính độ dài đoạn thẳng DE
ii, Tính số đo góc ABC (làm tròn đến độ)
iii, Tính diện tích tam giác ADE
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH
cho tam giác ABC vuông tại A, đường cao AH. Biết AH/AC=3/5 và AB=15cm.
a) Tính BH, CH.
b) Gọi E, F lần lượt là hình chiếu trên AB, AC. CM: AH^3=BC.BE.CF.
c) CM: Đường trung tuyến AM vuông góc với EF
Bài 1. Cho tam giác ABC vuông tại A có AC > AB và đường cao AH. Gọi D, E lần lượt
là hình chiếu của H trên AB, AC.
1) Chứng minh AD. AB = AE. AC và tam giác ADE đồng dạng với tam giác ACB.
2) Cho biết BH = 2cm, CH = 4,5 cm. Tính:
a) Độ dài đoạn thẳng DE.
b) Số đo của góc ABC.
c) Diện tích tam giác ADE.