Cho hình chữ nhật ABCD có AD = 6cm , AB = 8cm , hai đường chéo AC và BD cắt nhau tại O . Qua D kẻ đường thẳng d vuông góc với BD , d cắt tia BC tại E
a, Kẻ CH vuông góc với DE tại H , gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC và tính tỉ số diện tích của tam giác EHC và diện tích EDB
b, Chứng minh rằng : Ba đường thẳng OE , CD , BH đồng quy
Bài 3 cho tam giác ABC vuông tại A có đường cao AH gọi D, E theo thứ tự là hình chiếu của H trên AB và AC
1) Chứng minh tứ giác ADHE là hình chữ nhật
2) Gọi M và N lần lượt là trung điểm của BH, CH
a) Chứng minh DM//EN
b) Tính diện tích của tứ giác MDEN nếu diện tích của tam giác ABC là 6cm^2
3) Gọi O là trung điểm của BC, I là giao của AH và DE vẽ tia Ax vuông góc với tia OI cắt đường thẳng BC tại K chứng minh rằng 3 điểm K, D, E thẳng hàng
Cho hình chữ nhật ABCD có: AB= 8cm, BC= 6cm, AC cắt BD tại O.Qua B kẻ đường thẳng vuông góc với AC, cắt AC tại H, cắt DC tại M.
a/Chứng minh△CMH ∼ △CAD
b/Chứng minh: BC2= CM.CD
c/Tính diện tích tam giác BMC
d/Kẻ MK⊥ AB tại K, MK cắt AC tại I.Chứng minh: MI.BM=KH.AC
e/Chứng minh:góc BIM = góc AMC
f/ Gọi Q là giao điểm của OE và DC. Chứng minh Q là trung điểm của DC
g/Tính tỉ số diện tích △FDC và △EDB
h/Chứng minh 3 đường thẳng OE,CD,BF đồng quy.
Cho hình chữ nhật ABCD có AB = 8cm; BC = 6cm. Kẻ BH vuông góc với AC tại H, DM vuông góc với AC tại M.
a) Chứng minh ∆ABH đồng dạng với ∆ACB và suy ra AC.AH = AB^2.
b) Tính độ dài các đoạn thẳng AC, BH, CH.
c) Gọi I là điểm đối xứng với B qua AC. Chứng minh DM = IH và ACID là hình thang cân.
d) Gọi E, F lần lượt là trung điểm của AH, CD và K là giao điểm của BF với AC. Chứng minh rằng BF.EK ≥ BE.EF.
Cho hình chữ nhật ABDC (AB<AC) có AH là đường cao của tam giác ABC. Lấy điểm E đối xứng với A qua H. Gọi M và N lần lượt là hình chiếu của BD và CD lên điểm E.
Chứng minh ba điểm H, M, N thẳng hàng.Gọi K và P lần lượt là trung điểm của CH và BD. Đường thẳng vuông góc với AK tại K cắt AC tại Q. Chứng minh ba điểm K, Q, P thẳng hàng.Từ trung điểm L của cạnh BD vẽ LI vuông góc với BC tại I. Gọi F đối xứng D qua C. Đường thẳng vuông góc với DF tại F cắt LI tại O. Chứng minh O cách đều B và F.
Cho tam giác ABC vuông tại A. Đường phân giác góc B cắt AC tại D, cho AB= 6cm, BC= 10cm
a) Tính AC, AD, CD
b) Từ D kẻ đường thẳng vuông góc với AC cắt BC tại K. Qua K kẻ đường thẳng vuông góc với BD tại E và cắt AB, AC lần lượt tại F,H. Chứng minh tam giác ABC đồng dạng tam giác DHK
C) Chứng minh BFDK: hình thoi
Cho tam giác ABC có AB = 8cm, AC = 6cm, BC = 10cm. Kẻ đường cao AH( H thuộc BC).
a) Chứng minh tam giác ABC vuông tại A. Tính AH, CH.
b) Từ H kẻ HE vuông góc với AC( E thuộc AC). Trung tuyến CD ( D thuộc AB) cắt HE, AH lần lượt tại I, K. Chứng minh rằng\(\frac{KH}{KA}\)=\(\frac{CH}{CB}\).
c) Chứng minh: I là trung điểm của HE.
d) Chứng minh: B, K, E thẳng hàng.
Cho hình chữ nhật ABCD có AD = 6 cm , AB = 8 cm , hai đường chéo AC và BD cắt nhau tại O , Qua D kẻ đường thẳng d vuông góc với BD , d cắt tia BC tại E
a) Chứng minh rằng tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc CE tại H , chứng minh rằng : DC^2 = CH * DB
c) Gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC , và tính tỉ số diện tích của tam giác EHC và tam giác EDB
d) Chứng minh rằng ba đường thẳng OE , CD , BH đồng quy
Cho hình chữ nhật ABCD có AD = 6 cm , AB = 8 cm , hai đường chéo AC và BD cắt nhau tại O , Qua D kẻ đường thẳng d vuông góc với BD , d cắt tia BC tại E
a) Chứng minh rằng tam giác BDE đồng dạng với tam giác DCE
b) Kẻ CH vuông góc CE tại H , chứng minh rằng : DC^2 = CH * DB
c) Gọi K là giao điểm của OE và HC . Chứng minh rằng K là trung điểm của HC , và tính tỉ số diện tích của tam giác EHC và tam giác EDB
d) Chứng minh rằng ba đường thẳng OE , CD , BH đồng quy