a: Xét ΔBCD vuông tại C và ΔBED vuông tại E có
BD chung
góc CBD=góc EBD
Do đó; ΔBCD=ΔBED
Suy ra: BC=BE
hay ΔBCE cân tại B
b: Ta có: BC=BE
DC=DE
Do đó: BD là đường trung trực của CE
c: Ta có: CD=DE
mà DE<DA
nên CD<DA
a: Xét ΔBCD vuông tại C và ΔBED vuông tại E có
BD chung
góc CBD=góc EBD
Do đó; ΔBCD=ΔBED
Suy ra: BC=BE
hay ΔBCE cân tại B
b: Ta có: BC=BE
DC=DE
Do đó: BD là đường trung trực của CE
c: Ta có: CD=DE
mà DE<DA
nên CD<DA
cho tam giác abc vuông tại a lấy điểm d thuộc bc sao cho BD = BA . Kẻ đường thẳng vuông góc với BC tại D cắt AC tại E
.a) chứng minh AE = ED , từ đó so sánh AE và EC
b) Chứng minh BE là đường trung trực của AD
c) Gọi k là giao điểm của AB và ED , chứng minh AD // KC
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Cho tam giác ABC vuông tại A, đường phân giác BD (D thuộc AC) . Kẻ DE vuông BC (E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) tam giác ABD =tam giác EBD b) BD là đường trung trực của đoạn thẳng AE; c) tam giác DCF là tam giác cân
Cho tam giác ABC vuông tại A, đường phân giác BD (D thuộc AC) . Kẻ DE vuông BC (E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) tam giác ABD =tam giác EBD b) BD là đường trung trực của đoạn thẳng AE; c) tam giác DCF là tam giác cân d) AD<AC
Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD, kẻ DE vuông góc với BC (E thuộc BC). a) Chứng minh rằng: BD là trung trực của AE và AD < DC. b) Tia ED cắt tia BA tại F. Chứng minh: BD vuông góc với CF và AE // CF.c) Tia BD cắt FC tại G. Chứng minh rằng D cách đều ba cạnh của tam giác AEG. d) Lấy M và N tương ứng di động trên BF và BC sao cho BM + BN = BC. Chứng minh rằng trung điểm I của MN luôn nằm trên một đường thẳng cố định.
Chỉ cần làm phần c,d
Bài 3: Cho tam giác ABC vuông tại A. Vẽ đường phân giác BD của ΔABC . Từ D kẻ DE vuông góc với BC( E thuộc BC)
a) Chứng minh: ΔABD = ΔEBD
b) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh: AF = EC
c) Chứng minh: ΔBFC cân
Cho tam giác ABC vuông tại A, phân giác BD. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh rằng: BD là đường thẳng trung trực của AE
cho tam giác ABC vuông tại A, PHân giác BD. Qua D kẻ đường vuông góc BC tại E
a, CMR tam giác BAD=Tam giác BED
B, Chứng minh BD là đường trung trực của AE
c, Chứng minh AD < DC
d, TRên tia đối của tia AB lấy điểm F sao cho AF = CE.CM Ba điểm E, D, F thẳng hàng
Cho tam giác ABC vuông tại A. Đường phân giác BD (D∈AC). Kẻ DE BC(E∈BC)
a)Chứng minh tam giác ABD=tam giác EBD
b)So sánh AD và DC
c)Kẻ AH vuông góc với BC(H∈BC), AH cắt BD tại F. Chứng minh AD song song DE và tam giác ADF cân
d)C/minh AE là tia pgiac của góc HAC