Bài 31: Cho DABC có AB = 2cm, AC = 5cm, BC = 6cm. So sánh các góc của tam giác ABC.
Bài 32: Cho tam giác DEF có góc E=80, F=30. So sánh các cạnh của ∆DEF.
Bài 33: Trong các bộ ba đoạn thẳng có độ dài sau đây, bộ ba nào là ba cạnh của một tam giác?
a) 4cm; 5cm; 11cm
b) 5dm; 2dm; 7dm
c) 6m; 3m; 5m
Bài 34: Cho tam giác cân có độ dài hai cạnh là 6 cm và 13 cm. Tính độ dài cạnh còn lại và chu vi của tam giác cân đó.
Bài 35: Cho DABC vuông tại A, có AM là đường trung tuyến, biết AB = 6cm, AC = 8cm.
a) Tính AM.
b) Gọi G là trọng tâm của DABC. Tính AG.
Bài 36: Cho tam giác ABC, kẻ AH vuông góc với BC (H Î BC). Biết AC = 20cm; AH = 12cm; BH = 5cm. Tính độ dài HC, AB, BC?
Bài 37: Cho tam giác ABC có góc A=80, góc B=30
a) So sánh các cạnh của tam giác ABC.
b) Vẽ AH vuông góc với BC tại H. So sánh HB và HC
Bài 38: Cho góc nhọn xOy, Ot là tia phân giác của góc xOy, điểm H nằm trên tia Ot. Từ H kẻ HA vuông góc với Ox và HB vuông góc với Oy (A thuộc Ox, B thuộc Oy).
a) Chứng minh tam giác HAB là tam giác cân.
b) Gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OH.
Chứng minh BC vuông góc với Ox.
c) Khi góc xOy bằng 600, chứng minh OA = 2OD.
Bài 39: Cho tam giác ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K. Chứng minh:
a) Tam giác BNC = Tam giác CMB
b) Tam giác BKC cân tại K
c) BC < 4.KM
Bài 40: Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc với BC (E thuộc BC). Gọi F là giao điểm của AB và DE. Chứng minh rằng:
a) BD là đường trung trực của AE
b) DF = DC
c) AD < DC
d) AE // FC
Bài 40:
a: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
Suy ra: BA=BE và DA=DE
Ta có: BA=BE
nên B nằm trên đường trung trực của AE(1)
Ta có: DA=DE
nên D nằm trên đường trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: DF=DC
c: Ta có: AD=DE
mà DE<DC
nên AD<DC
d: Ta có: ΔADF=ΔEDC
nên AF=EC
Xét ΔBFC có
\(\dfrac{BA}{AF}=\dfrac{BE}{EC}\)
Do đó: AE//CF