Lời giải:
a)
$x^3+y^3+2x^2-2xy+2y^2=(x^3+y^3)+2(x^2-xy+y^2)$
$=(x+y)(x^2-xy+y^2)+2(x^2-xy+y^2)=(x^2-xy+y^2)(x+y+2)$
b)
$a^4+ab^3-a^3b-b^4=(a^4-a^3b)+(ab^3-b^4)$
$=a^3(a-b)+b^3(a-b)=(a-b)(a^3+b^3)=(a-b)(a+b)(a^2-ab+b^2)$
c)
\(a^3-b^3+3a^2+3ab+3b^2=(a^3-b^3)+3(a^2+ab+b^2)\)
\(=(a-b)(a^2+ab+b^2)+3(a^2+ab+b^2)=(a^2+ab+b^2)(a-b+3)\)
d)
\(x^4+x^3y-xy^3-y^4=x^3(x+y)-y^3(x+y)=(x+y)(x^3-y^3)=(x+y)(x-y)(x^2+xy+y^2)\)